В каких организмах содержится в: 7. В клетках каких организмов содержится в десятки раз больше углеводов, чем в животной

Содержание

Природные токсины в продуктах питания

Что такое природные токсины?

Природные токсины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами живых организмов. Эти токсины не опасны для вырабатывающих их организмов, но могут быть токсичны для других, в том числе для человека, в случае их приема с пищей. Эти химические вещества имеют разнообразную структуру и различаются по биологической функции и степени токсичности.

Некоторые токсины вырабатываются растениями и играют роль защитного механизма против хищников, насекомых или микроорганизмов или же образуются в результате поражения растений микроорганизмами, такими как плесневые грибы, вследствие климатического стресса (засуха или чрезвычайно высокая влажность). 

Другими источниками природных токсинов являются микроскопические водоросли и планктон, обитающие в океанах и иногда озерах и вырабатывающие химические вещества, токсичные для человека, но не для рыб или моллюсков, питающихся этими организмами. В случае употребления человеком рыбы или моллюсков, содержащих эти токсины, может быстро наступить неблагоприятная реакция. 

Ниже приводится описание некоторых природных токсинов, наиболее часто встречающихся в продуктах питания и создающих угрозу для нашего здоровья.  

Биотоксины, вырабатываемые водными организмами 

Токсины, вырабатываемые морскими и пресноводными водорослями, называются водорослевыми. Эти токсины продуцируются некоторыми видами водорослей в период цветения. Вероятность содержания этих токсинов в моллюсках, таких как мидии, устрицы и гребешки, выше, чем в рыбе. Водорослевые токсины могут вызывать диарею, рвоту, ощущение покалывания в конечностях, паралич и другие эффекты у человека, других млекопитающих и рыб. Они могут накапливаться в организме моллюсков и рыбы или заражать питьевую воду. Они не имеют цвета и запаха и не разрушаются в процессе термической обработки или при замораживании. 

Еще одним примером является сигуатера, или отравление в результате употребления в пищу рыбы, зараженной сигуатоксином – веществом, вырабатываемым динофлагеллятами – водными одноклеточными организмами. Сигуатоксин накапливается в организме таких рыб, как барракуда, черный групер, луциан-собака и королевская макрель. Симптомами сигуатеры являются тошнота, рвота и неврологические симптомы, такие как ощущение покалывания в пальцах рук и ног. В настоящее время лечения при отравлении сигуатоксином нет. 

Цианогенные гликозиды

Цианогенные гликозиды – это фитотоксины (т.е. токсические соединения, вырабатываемые растениями), встречающиеся в составе по меньшей мере 2000 видов растений, многие из которых употребляются в пищу в некоторых регионах мира. К наиболее массово потребляемым продуктам питания, содержащим цианогенные гликозиды, относятся кассава, сорго, ядра косточковых плодов, корни бамбука и миндаль. Токсический потенциал цианогенного растения зависит, главным образом, от того, насколько высокой будет концентрация цианида в организме человека в результате его употребления в пищу.  У человека острая интоксикация цианидами может иметь следующие клинические признаки: учащение дыхания, падение кровяного давления, головокружение, головная боль, боль в животе, рвота, диарея, спутанность сознания, цианоз, сопровождаемый фибриллярными мышечными сокращениями и судорогой, после чего наступает терминальная кома. Смерть в результате отравления цианидами может происходить при достижении ими концентраций, превышающих метаболические способности конкретного организма.  

Фуранокумарины

Эти токсины продуцируются разнообразными растениями, такими как пастернак (растение, родственное моркови и петрушке), корнеклубнях сельдерея, цитрусовых (лимон, лайм, грейпфрут, бергамот) и некоторые лекарственные растения. Фуранокумарины – токсины, вырабатываемые растением в ответ на раздражитель, например, физическое повреждение. У чувствительных людей эти токсины могут вызвать нарушения работы желудочно-кишечного тракта. Фуранокумарины обладают фотосенсибилизирующим действием и могут вызывать серьезные раздражения кожи под воздействием ультрафиолета. Чаще всего такие реакции возникают при попадания сока этих растений на кожу, однако описаны случаи аналогичного эффекта в результате употребления в пищу больших количеств овощей, богатых фуранокумаринами.  

Лектины 

Многие бобы содержат токсины, называемые лектинами. В наибольшей концентрации они присутствуют в фасоли, особенно красной. Всего 4 или 5 сырых бобов могут спровоцировать сильную боль в животе, рвоту и диарею. Лектины разрушаются при замачивании сушеных бобов в течение по меньшей мере 12 часов и их варке на сильном огне в течение не менее 10 минут. Консервированная фасоль уже подвергалась такой обработке и может употребляться в пищу в готовом виде.

Микотоксины

Микотоксины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами плесневых грибов. Плесневые грибы растут на целом ряде видов продовольственной продукции, таких как злаки, сухофрукты, орехи и специи.  Появление плесени может иметь место как до, так и после уборки урожая, на этапе хранения и/или на готовых продуктах питания в условиях благоприятной температуре и высокой влажности. 

Большинство микотоксинов отличается химической стабильностью и не разрушается в процессе термической обработки. Присутствующие в продуктах питания микотоксины могут вызывать острую интоксикацию, симптомы которой развиваются вскоре после употребления сильно контаминированных продуктов питания и даже могут привести к летальному исходу.  Хроническое потребление микотоксинов с продуктами питания может оказывать долгосрочное негативное воздействие на здоровье, в частности, провоцируя онкологические заболевания и иммунодефицит. 

Соланин и чаконин

Все растения семейства пасленовых, к которому относятся томаты, картофель и баклажаны, содержат природные токсины соланин и чаконин (гликоалкалоиды). Как правило, концентрация этих веществ в растениях невысока. Тем не менее, в более высокой концентрации они присутствуют в побегах картофеля и кожуре и зеленоватых частях его клубней, имеющих горький привкус, а также в зеленых томатах. Растения вырабатывают токсин в ответ на внешний раздражитель, такой как механическое повреждение, ультрафиолетовое излучение, колонизация микроорганизмами и нападение со стороны насекомых-вредителей и травоядных животных. Для предупреждения возникновения соланина и чаконина в картофеле важно хранить клубни в темном, прохладном и сухом месте. Также не рекомендуется употреблять в пищу позеленевшие или пускающие ростки части клубней. 

Ядовитые грибы 

Дикорастущие грибы могут содержать ряд токсинов, например, мусцимол и мускарин, которые могут вызывать рвоту, диарею, спутанность сознания, нарушения зрения, повышенное слюноотделение и галлюцинации. Симптомы начинают проявляться через 6–24 часа после употребления грибов в пищу. Обычно для смертельного отравления характерно позднее развитие тяжелых симптомов, свойственных поражению печени, почек и нервной системы. Чистка и термическая обработка грибов не позволяют ликвидировать содержащиеся в них токсины. Рекомендуется избегать употребления в пищу любых дикорастущих грибов при отсутствии полной уверенности в их безвредности.

Пирролизидиновые алкалоиды 

Пирролизидиновые алкалоиды (ПА) – это токсины, которые вырабатывают около 600 растений. В наибольшем количестве их продуцируют растения семейств бурачниковые, астровые и бобовые. Многие из этих растений – сорняки, растущие на сельскохозяйственных угодьях и засоряющие продовольственные культуры.  ПА вызывают широкий спектр негативных эффектов. Они могут обладать острой токсичностью. В этой связи главным источником беспокойства является способность некоторых ПА повреждать ДНК клеток, что может провоцировать онкологические заболевания.

ПА не разрушаются в процессе термической обработки. Они обнаруживаются в травяных сборах, меде, ароматических травах и специях и других видах продовольственной продукции, таких как злаки и продукты на их основе.  Тем не менее, уровень их потребления людьми считается низким. Ввиду сложности вопроса и большого числа таких соединений общий риск для здоровья в полной мере еще не определен. Комитет Кодекса ФАО/ВОЗ по загрязняющим примесям в продуктах питания ведет разработку рекомендаций по предупреждению попадания содержащих ПА растений в продовольственную цепочку.

Что могу сделать я для снижения риска, связанного с природными токсинами?

Важно помнить, что природные токсины могут присутствовать в целом ряде культур и продуктах питания.  В нормальном сбалансированном здоровом рационе концентрация природных токсинов намного ниже порогов острого и хронического токсического действия. 
Для снижения риска для здоровья, связанного с присутствием природных токсинов в продуктах питания, рекомендуется: 

•             не думать, что все «природное» по определению безвредно;

•             выбрасывать поврежденные, мятые, изменившие цвет и, в частности, плесневые продукты питания;

•             выбрасывать продукты питания, которые на запах или вкус не являются свежими или имеют непривычный вкус;

•             употреблять в пищу только те грибы или дикие растения, которые точно не являются ядовитыми.

Деятельность ВОЗ

ВОЗ в сотрудничестве с ФАО отвечает за оценку риска, который представляют природные токсины для человека в результате контаминации продуктов питания, и выработку рекомендаций по обеспечению необходимой защиты. 

Оценка риска в связи с присутствием природных токсинов в продуктах питания выполняется Комитетом экспертов ФАО/ВОЗ по пищевым добавкам (JECFA) и используется правительствами стран и Комиссией Кодекс Алиментариус (нормативным межправительственным органом по пищевым стандартам) для определения предельных допустимых значений концентрации различных примесей в продуктах питания или выработки других рекомендаций по управлению рисками в интересах предотвращения или снижения контаминации. Стандарты Кодекса являются международным ориентиром для национальных производителей продовольствия и торговли продовольствием и призваны гарантировать потребителям во всем мире, что приобретаемые ими продукты питания соответствуют установленным стандартам безопасности и качества, где бы они ни были произведены. 

JECFA устанавливает предельно допустимые уровни потребления различных природных токсинов.
В состав JECFA или специальных научных экспертных групп ФАО/ВОЗ входят независимые международные эксперты, которые проводят научные обзоры всех опубликованных исследований и других данных по отдельным природным токсинам. По итогам этой работы по оценке риска для здоровья устанавливаются либо предельные допустимые уровни потребления или формулируются другие рекомендации для обозначения степени опасности для здоровья (например, пределы экспозиции). Выдвигаются рекомендации относительно управления рисками и мер по предотвращению и снижению контаминации, а также аналитических методов и мероприятий по мониторингу и контролю.
Во избежание нанесения ущерба здоровью людей содержание природных токсинов в продуктах питания должно быть максимально низким. Природные токсины не только являются источником риска для здоровья человека и животных, но и негативно воздействуют на ситуацию с продовольственной безопасностью и питанием, поскольку ограничивают доступ людей к здоровой пище. ВОЗ настоятельно рекомендует национальным органам власти вести мониторинг содержания наиболее значимых природных токсинов в продовольственной продукции, реализуемой на их рынке, и принимать меры для максимального его сокращения и обеспечивать соблюдение международных рекомендаций по предельно допустимым значениям, условиям хранения и законодательству.

 

Химические элементы в живых организмах — урок. Химия, 8–9 класс.

В организме человека содержатся атомы более чем \(70\) химических элементов.

 

Наибольшее значение имеют органогенные неметаллы углерод, водород, кислород и азот, которые входят в состав органических соединений.

 

Ионы натрия и калия очень важны для здоровья. Ион натрия — главный внеклеточный ион, а ион калия — внутриклеточный. Калий поддерживает работу сердечной мышцы.

 

Кальций входит в состав костной ткани. Ионы кальция необходимы для работы нервной системы, для работы сердца и свёртывания крови.

 

Магний является стимулятором обмена веществ, входит в состав печени, костей, нервной ткани, крови, мозга.

 

Железо входит в состав гемоглобина, который обеспечивает транспорт кислорода кровью.

 

Соединения фтора входят в состав костей и зубной эмали. Он является необходимым элементом обмена веществ в мышцах, железах, нервной ткани.

 

Хлор — один из химических элементов, без которых невозможно существование живых организмов. Хлорид натрия входит в состав плазмы крови. Он необходим для правильного обмена веществ, работы сердца и нервной системы. Соляная кислота содержится в желудочном соке и участвует в переваривании пищи.

 

Соединения брома участвуют в регуляции процессов возбуждения и торможения в нервной системе.

 

Иод входит в состав гормонов щитовидной железы, регулирующих процессы обмена веществ в организме.

 

Атомы серы содержатся в белках, многих витаминах и гормонах.

 

Фосфор входит в состав нуклеиновых кислот и АТФ, содержится в костях, нервной ткани, крови.

Урок 5. химический состав клетки — Биология — 5 класс

Биология, 5 класс

Урок 5. Химический состав клетки

Перечень вопросов, рассматриваемых на уроке:

  1. Урок посвящён изучению химического состава клетки.

Ключевые слова:

Клетка, химический состав, неорганические и органические вещества, вода, минеральные соли, белки, жиры, углеводы, нуклеиновые кислоты

Тезаурус:

Химический элемент – это атомы одного и того же вида.

Органические вещества – это вещества, которые входят в состав живых организмов и образуются только при их участии.

Неорганические вещества – это вещества, которые входят в состав неживой природы и могут образовываться без участия живых организмов.

Обязательная и дополнительная литература по теме

  1. Биология. 5–6 классы. Пасечник В. В., Суматохин С. В., Калинова Г. С. и др. / Под ред. Пасечника В. В. М.: Просвещение, 2019
  2. Биология. 6 класс. Теремов А. В., Славина Н. В. М.: Бином, 2019.
  3. Биология. 5 класс. Мансурова С. Е., Рохлов В. С., Мишняева Е. Ю. М.: Бином, 2019.
  4. Биология. 5 класс. Суматохин С. В., Радионов В. Н. М.: Бином, 2014.
  5. Биология. 6 класс. Беркинблит М. Б., Глаголев С. М., Малеева Ю. В., Чуб В. В. М.: Бином, 2014.
  6. Биология. 6 класс. Трайтак Д. И., Трайтак Н. Д. М.: Мнемозина, 2012.
  7. Биология. 6 класс. Ловягин С. Н., Вахрушев А. А., Раутиан А. С. М.: Баласс, 2013.

Теоретический материал для самостоятельного изучения

Сейчас на Земле известно более ста химических элементов. Из их атомов состоят все вещества, встречающиеся на Земле. 80 химических элементов обнаружены в составе живых организмов. При этом четыре из них – углерод, водород, азот и кислород составляют около 98 % массы любого организма. Остальные химические элементы встречаются в живых организмах в малых количествах.

Клетки всех живых организмов состоят из одних и тех же химических элементов. Эти же элементы входят и в состав объектов неживой природы. Сходство состава указывает на общность живой и неживой природы.

На этом уроке вы узнаете, из каких химических элементов состоят клетки живых организмов, и какие изменения претерпевают эти химические соединения по мере роста и развития клеток.

В клетках живых организмов больше всего содержится таких химических элементов, как углерод, водород, кислород и азот. Вместе они составляют до 98 % массы клетки. Около 2 % массы клетки приходится на восемь элементов: калий, натрий, кальций, хлор, магний, железо, фосфор и серу. Остальные химические элементы содержатся в клетках в очень малых количествах.

Химические элементы, соединяясь между собой, образуют неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, нуклеиновые кислоты и др.) вещества.

Значение каждого из веществ, содержащегося в клетке уникально. Вода придаёт клетке упругость, определяет её форму, участвует в обмене веществ. Неорганические вещества используются для синтеза органических молекул. При недостатке минеральных веществ важнейшие процессы жизнедеятельности клеток нарушаются. Углеводы придают прочность клеточным оболочкам, а также служат запасающими веществами. Белки входят в состав разнообразных клеточных структур, регулируют процессы жизнедеятельности и тоже могут запасаться в клетках. Жиры откладываются в клетках. При расщеплении жиров освобождается необходимая живым организмам энергия. Нуклеиновые кислоты играют ведающую роль в сохранении наследственной информации.

Клетка – это миниатюрная природная лаборатория, в которой синтезируются и претерпевают изменения различные химические соединения. Сходство химического состава клеток разных организмов доказывает единство живой природы.

Разбор типового тренировочного задания:

Тип задания: Сортировка элементов по категориям

Текст вопроса: Расставьте названия веществ в таблицу:

Органические вещества

Неорганические вещества

Варианты ответов:

Белки

Вода

Углеводы

Жиры

Кислород

Правильный вариант ответа:

Органические вещества

Неорганические вещества

белки

углеводы

жиры

вода

кислород

Разбор типового контрольного задания

Тип задания: Выделение цветом

Текст вопроса: Выделите цветом вещества, входящие в состав живых организмов:

Варианты ответов:

  1. Вода
  2. Пластик
  3. Белки
  4. Жиры
  5. Нефть
  6. Углеводы
  7. ДНК и РНК

Правильный вариант ответа:

1) Вода

3) Белки

4) Жиры

6) Углеводы

7) ДНК и РНК

Происхождение нефти, ее состав и основные свойства

Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает

Две гипотезы

У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.

Необходимые условия для превращения органики в нефть возникают на глубине 1,5–6 км в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе градиента характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.

60 млн лет может занимать природный процесс образования нефти из органических останков

Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.

Состав и свойства нефти

ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ

Основные химические элементы, из которых состоит нефть: углерод — 83–87%, водород — 12–14% и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).

От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью 0,82–0,92 г/см³.Температура кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.

Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?

С точки зрения современных сторонников неорганической, или минеральной, гипотезы, углеводороды образуются из содержащихся в мантии Земли воды и углекислого газа в присутствии закисных соединений металлов на глубинах 100–200 км. Высокое давление в недрах земли препятствует термической деструкции сложных молекул углеводородов. В свою очередь сторонники органики не отрицают, что простые углеводороды, например метан, могут иметь и неорганическое происхождение. Опыты, направленные на подтверждение абиогенной теории, показали, что получаемые углеводороды могут содержать не более пяти атомов углерода, а нефть представляет собой смесь более тяжелых соединений. Этому противоречию объяснений пока нет.

Этапы образования нефти

СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ

  • осадконакопление (седиментогенез) — в процессе накопления осадка остатки живых организмов выпадают на дно водных бассейнов или захороняются в континентальной обстановке;
  • биохимическая (диагенез) — происходит уплотнение, обезвоживание осадка и биохимические процессы в условиях ограниченного доступа кислорода;
  • протокатагенез — опускание пласта органических остатков на глубину до 1,5–2 км при медленном подъеме температуры и давления;
  • мезокатагенез, или главная фаза нефтеобразования (ГФ Н), — опускание пласта органических остатков на глубину до 3–4 км при подъеме температуры до 150°C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит «отжим» нефти за счет перепада давления и эмиграционный вынос микронефти в пласты-коллекторы, а по ним — в ловушки;
  • апокатагенез керогена, или главная фаза газообразования (ГФГ ), — опускание пласта органических остатков на глубину (как правило, более 4,5 км) при подъеме температуры до 180—250°C. При этом органическое вещество теряет нефтегенерирующий потенциал и генерирует газ.

В ловушке

Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.

В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.

Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.

Типы коллекторов

БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ

Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.

Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.

Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.

Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.

Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.

Антиклиналь
Тектоническая экранированная ловушка
Соляной купол
Стратиграфическая ловушка

Ровесница динозавров

Когда же образовались те структуры, в которых сегодня находят нефть? Основные ее ресурсы сосредоточены в относительно молодых мезозойских и кайнозойских отложениях, сформировавшихся от нескольких десятков млн до 250 млн лет назад. Однако добыча нефти ведется и из палеозойских отложений (до 500 млн лет назад), а в Восточной Сибири — даже из отложений верхнего протерозоя, которым более полумиллиарда лет.

Многочисленные нефтяные месторождения встречаются в отложениях девона (420–360 млн лет назад). В этот период на Земле появились насекомые и земноводные, в морях большого разнообразия достигли рыбы и кораллы. Во время пермского периода (300–250 млн лет назад) климат стал более засушливым, в результате чего высыхали моря и образовывались мощные соляные толщи, ставшие впоследствии идеальными флюидоупорами.

Эпоха господства динозавров — юрский (200–145 млн лет назад) и меловой (145–66 млн лет назад) периоды мезозоя — характеризуется максимальным расцветом жизни и связана с высоким осадконакоплением. Некоторые гигантские и крупные месторождения (Иран, Ирак) нефти находят в отложениях палеогена(66—23 млн лет назад). Известны месторождения нефти в четвертичных породах возрастом менее 2 млн лет (Азербайджан).

Впрочем, связь между возрастом пород-коллекторов и временем образования нефти не прямолинейна. Этот процесс может быть последовательным: в юрском или меловом периоде органический осадок начал опускаться вниз и преобразовываться в нефть, которая по прошествии нескольких десятков миллионов лет мигрировала в коллекторы, принадлежащие к более молодым комплексам пород. С другой стороны, древние нефтематеринские породы, образованные в палеозое, могли опуститься на достаточную для созревания нефти глубину намного позднее. Таким образом, в одних и тех же коллекторах можно найти и более молодую, и древнюю нефть, значительно различающиеся по своим свойствам.

Смешанные свойства

Между тем моментом, когда на дно морского бассейна опускается отмерший планктон, и тем, когда накопившийся слой органики, погрузившись на несколько километров вниз, отдает нефть, миллионы лет и целый ряд химических и физических преобразований. Поэтому нет ничего удивительного в том, что состав нефти крайне разнообразен и неоднороден. Именно поэтому сами нефтяники привыкли употреблять это слово во множественном числе — говоря о разведке или добыче нефтей и подразумевая, что каждый раз извлекаемая жидкость будет уникальной, отличающейся от всего, что было добыто ранее.

В своей основе нефть — сложная смесь углеводородов различной молекулярной массы. Преобладают в ней алканы, нафтены и арены. Наиболее простые из них — алканы (парафиновые углеводороды), у которых к атомам углерода присоединено максимальное количество атомов водорода. К алканам относятся метан, этан, пропан, бутан, пентан и т. д. Они могут быть представлены газами, жидкостями и твердыми кристаллическими веществами. Количество алканов в нефти колеблется от четверти до семидесяти процентов объема. При большом проценте алканов нефть считается парафинистой. С точки зрения добычи такое свойство считается проблемным — при подъеме нефти из скважины и соответственном уменьшении температуры парафины могут кристаллизоваться и выпадать на стенки скважин.

Нафтены — соединения, в которых атомы углерода соединяются в циклическое кольцо (циклопропан, циклобутан, циклопентан и др.). Все связи углерода и водорода здесь насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами. Нафтены могут иметь от 2 до 5 циклов в молекуле, по их составу химики пытаются определять зрелость и другие свойства нефти.

В составе аренов, или ароматических углеводородов, также есть циклические структуры — бензольные ядра. Для них характерны большая растворяемость, более высокая плотность и температура кипения. Обычно нефть содержит 10–20% аренов, а в ароматических нефтях их содержание доходит до 35%. Наиболее богаты аренами молодые нефти. Арены — ценное сырье при производстве синтетических каучуков, пластмасс, синтетических волокон, анилино-красочных и взрывчатых веществ, фармацевтических препаратов.

Нефть любят называть черным золотом, однако чистые углеводороды бесцветны. Цвет нефтям придают разнообразные примеси, в основном смолы. Асфальтосмолистая часть нефтей — вещество темного цвета. Входящие в ее состав асфальтены растворяются в бензине.

Нефтяные смолы, напротив, не растворяются. Они представляют собой вязкую или твердую, но легкоплавкую массу. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими углеводородами. Такие нефти обладают повышенной вязкостью, что затрудняет их извлечение из пласта.

Железо в организме: зачем оно нужно и как его получить

В организме часто бывает дефицит железа. Это связано с низкой биодоступностью железа — при контакте с кислородом железо образует оксиды, которые слабо растворимы и поэтому сложно доступны для поглощения организмом.

Причины дефицита железа

Дефицит железа возникает в результате истощения запасов железа, когда абсорбция железа в течение длительного периода не успевает за метаболическими потребностями в железе, или происходит резкая потеря железа, связанная с кровопотерей.

Основные причины дефицита железа:

  • обильные менструальные или маточные кровопотери,
  • кровопотери при хирургических вмешательствах,
  • приtм антикоагулянтов или антиагрегантов,
  • частое донорство,
  • вегетарианство и анорексия,
  • хронические заболевания с нарушением всасывания железа (различные гастро-энтерологические патологии, хроническая сердечная, почечная недостаточность).

Группа риска — беременные женщины, недоношенные и дети в периоды интенсивного роста, женщины с обильными месячными и вегетарианцы. Очень часто дефицит железа встречается у девочек-подростков, потому что менструальные потери железа накладываются на потребность в быстром росте.

Когда запасов железа в организме недостаточно, синтез гемоглобина нарушается, и появляются симптомы дефицита железа и анемии.

Наиболее частые симптомы дефицита железа или анемии

  • усталость и недостаток энергии,
  • одышка при обычной нагрузке,
  • заметное сердцебиение (учащенное сердцебиение),
  • бледная кожа, десны и слизистая рта.

Менее распространенные симптомы

  • трудности с концентрацией внимания,
  • необычные вкусовые пристрастия (желание грызть лед, есть мел, клей или землю),
  • сильная сухость во рту, трещины в уголках рта и сглаженный язык,
  • головная боль и ухудшение памяти,
  • непереносимость холода (постоянно холодные руки и ноги),
  • снижение иммунитета,
  • легко возникающие синяки и кровоизлияния на коже,
  • сухость кожи, ломкость ногтей и выпадение волос,
  • синдром беспокойных ног.

Последствия дефицита железа

Дефицит железа — это снижение уровня железа в организме при сохранении нормальной концентрации гемоглобина, когда уровень его все еще достаточен для производства эритроцитов, но другие органы и ткани страдают от недостатка железа.

Если не восполнить запасы, то развивается более тяжелое заболевание — железодефицитная анемия. Это состояние, когда железа недостаточно для формирования гемоглобина в эритроцитах, снижается его уровень и количество переносимого кислорода, а значит возникает кислородное голодание тканей всего организма.

По статистике Всемирной организации здравоохранения, анемию имеют треть женщин детородного возраста, а также 42% детей до пяти лет.

Чем меньше железа, тем ниже концентрация гемоглобина в эритроците, тем тяжелее анемия и гипоксия. Даже легкие и умеренные формы анемии могут быть связаны с функциональными нарушениями, влияющими на когнитивное развитие, механизмы иммунитета, способность к обучению и работоспособность.

Риски дефицита железа во время беременности

Дефицит железа опасен во время беременности — возрастает потребность самого организма матери и растет плод — железодефицитная анемия быстро усугубляется.

Риски для женщины:

  • недоразвитие плаценты,
  • самопроизвольный аборт,
  • преждевременные роды,
  • вероятность развития тяжелых послеродовых кровотечений.

Риски для ребенка:

  • внутриутробная задержка развития плода,
  • высокий риск внутриутробной смерти,
  • рождение с низкой массой тела или недоношенностью,
  • задержка нейрокогнитивного развития после рождения (отстают в развитии и способности к обучению).

Планета бактерий

 Константин Северинов: чему мы можем научиться у господствующей на Земле формы жизни


 

Окруженные со всех сторон бактериями, мы сидим в кафе Сколтеха, подкармливаем кофе с пирожными бактерий, проживающих в нашем теле, и говорим о бактериях, с каждым сказанным словом вдыхая и выдыхая их. Константин Северинов — один из тех ученых, кто, добившись международной известности, вернулся делать науку в Россию. Выпускник биофака МГУ, сейчас он заведует лабораториями в Институте биологии гена РАН и в Институте молекулярной генетики РАН, является профессором Сколковского института науки и технологий и профессором Университета Ратгерса (США). Впрочем, для нас главное — что он изучает этих маленьких невидимых существ, которые первыми заселили Землю​.

— Мне интересно, чтоб было интересно, — пожимает плечами Северинов. — Интересы, конечно, меняются, но я решил заняться биологией лет в шесть-семь и с тех пор не жалею. Я точно знаю, что мне неинтересно: делать полезные вещи ради пользы.

Кстати, я абсолютно убежден, что самые полезные приложения в биомедицине возникают не потому, что вы, например, решили победить рак и будете с ним бороться. Наука не боксерский матч. Отгадка, как правило, находится вовсе не там, где ее ищут.

Сейчас мне интересней всего, как происходит экспрессия генов, — как на молекулярном уровне принимается решение, чтобы ген начал или остановил свою работу. Эти процессы универсальны, понять их очень важно — они лежат в основе развития организма или заболеваний, таких как рак. А еще мне интересна экология микробов, взаимодействие микробов и вирусов друг с другом и с высшими организмами. Ведь основная форма жизни на Земле — это микробы. Она не только самая древняя, но и самая разнообразная, хоть мы и считаем себя венцом творения, самыми важными обитателями Земли. В реальности это, конечно, не так.

 

Главные жители Земли

[Кот Шрёдингера] Да ведь это мы — многоклеточные, такие разнообразные и непохожие друг на друга! А микробы хоть и существуют на миллиарды лет дольше, не слишком отличаются друг от друга, по крайней мере для неспециалиста.

[КС] Всё ровно наоборот: это мы очень скучные и одинаковы, а они очень даже разные! Критерий разнообразия — не ручки-ножки или цвет глаз, а разнообразие генетическое. Ведь всё живое — это просто генетический текст, послание, закодированное в виде последовательностей нуклеотидов ДНК. Оценить разнообразие жизни можно просто сравнив эти тексты. Точно так же можно оценить, например, разнообразие группы восточнославянских языков, сравнив русский, украинский и белорусский и подсчитав, сколько различий они накопили.

Бактерии — микроорганизмы, клетки которых не содержат ядра (прокариоты). Еще прокариотами являются археи, но их куда меньше. На сегодня описано около 10 тысяч видов бактерий, но предполагается, что их свыше миллиона. Впрочем, понятие «вид» у бактерий довольно условное.

Биоинформатика — очень модная наука. Она изучает, как передается и обрабатывается информация в живых клетках и между ними. В узком смысле — математические методы анализа геномов, позволяющие сравнивать их.

Геном — записанная с помощью ДНК наследственная информация, копия которой содержится в каждой клетке организма. Работу генома как организованного целого изучает геномика.

Представьте себе универсальное древо жизни — огромное дерево, на котором каждая веточка — это некий генетический текст, соответствующий какому-либо организму. Это дерево очень большое, и происходим мы из одного корня: вся жизнь возникла на планете единожды. Точнее, вся современная жизнь. Так вот, на этом очень разлапистом, ветвистом дереве все человечки, животные, растения и рептилии — это лишь одна небольшая веточка, а все остальные очень разные ветви — как раз микробы. Они для нас однообразны, потому что мы их не видим. Но с молекулярной точки зрения они составляют 90–95% разнообразия жизни на планете.

[КШ] Как это генетическое разнообразие проявляется в жизни микробов?

[КС] Я недавно готовил конференцию под названием «Экстремофилы», и мы общались с шефом департамента науки в Минобре. Так он сначала думал, что экстремофилы — это люди, которые катаются на горных лыжах вне подготовленных трасс. Экстремофилы — это и правда любители экстремальных условий, но только микробы. Условия жизни на планете очень разнообразны: от вечной мерзлоты до горячих источников, в которых может быть 110–120 градусов, а те из них, что на дне океана, находятся еще и под гигантским давлением. Есть места с безумной концентрацией соли, как Мёртвое море. Или с огромным количеством кислоты. И везде кипит жизнь, но единственные, кто там живет, — те самые микробы-экстремофилы. Происходит это потому, что они обладают удивительной генетической изменчивостью и адаптивностью. И в земле они есть, и в стратосфере. Вся планета, в духе учения Вернадского, живая.

[КШ] Вот тут, вокруг нас, воздух весь ими заполнен?

[КС] Что значит «заполнен»? Вон микроб пролетел, видите? Да, их много: в кубическом метре воздуха микробов примерно столько, сколько людей в Москве. А в кубическом сантиметре снега в Антарктиде от 10 до100 бактериальных клеток. Они могут не жить активно, а просто сидеть, словно пассажиры, и ждать, когда какой-нибудь айсберг отвалится и увезет их в Африку.

Фото: Фотобанк Лори  /  Колонии бактерий в чашке Петри.

Этот лабораторный сосуд был изобретён в 1877 году и назван так в честь изобретателя,

немецкого бактериолога Юлиуса Петри, ассистента Роберта Коха

  

Как эволюционируют микробы

[КШ] Бактерии эволюционируют быстрее других существ?

[КС] Просто они быстро делятся, и их очень много. Они словно самим господом богом созданы для эффективного естественного отбора. Кишечная палочка делится за 15 минут. Если вы посадили одну бактерию кишечной палочки в чашку, то через 8 часов обнаружите колонию ее потомков размером с булавочную головку — в ней будет 10 миллионов бактерий, это опять-таки — столько, сколько человек живет в Москве.

Чтобы попытаться выработать у москвичей устойчивость к радиации, придется взорвать над столицей атомную бомбу и ждать потомства от выживших. С бактериями всё гораздо проще — вырастили колонию за 8 часов, облучили ее, и вот уже можно изучать потомство наиболее жизнестойких особей. С ними удобно работать! Быстрее ли они эволюционируют? Нет, просто быстрее размножаются.

Горизонтальный перенос генов— передача генетического материала другому организму, не являющемуся потомком. 

Митохондрия — органелла (орган клетки) размером с бактерию, запасающая и высвобождающая по мере надобности энергию. У нее есть свой геном. Считается, что митохондрии — это бывшие бактерии, которые внедрились в клетки более продвинутых организмов.

Ретровирусы — вирусы, генетическая информация которых содержится в на молекуле РНК. После проникновения ретровируса в клетку его РНК переписывается в ДНК, которая транспортируется в ядро и встраивается в ДНК клетки. Самый известный представитель — ВИЧ.

[КШ] У них, кажется, есть специальный механизм, позволяющий обмениваться генами разным видам бактерий?

[КС] Есть, действительно. Генетика дарвинизма предполагала только вертикальную передачу признаков — по наследству. Всё древо жизни казалось такой ветвящейся структурой, растущей из одного корня и постепенно усложняющейся. Наверху, конечно же, всегда был человек. Предполагалось, что у каждого вида своя эволюционная траектория, идущая от общего корня, и эти траектории не пересекаются.

Но у бактерий широко распространен горизонтальный перенос генов, когда один вид обменивается генами с другим. Вот представьте себе: пошли вы в зоопарк, увидели слона — вам понравился его хобот, вы обменялись со слоном соответствующими генами и ушли уже с хоботом. Бактерии так делают часто — для одноклеточных это просто. И получается, что ветви на эволюционном древе не изолированы, а образуют сеть.

[КШ] Обмен генами случаен или бактериям действительно может понравиться чужой «хобот»?

[КС] Случаен, никто ничего не выбирает. Допустим, сидят себе бактерии, и тут вдруг становится очень плохо — среда изменилась. Большинство бактерий умирает, и вся их ДНК вытекает наружу. А некоторые выживают и встраивают в себя части этой ДНК. Большинству это ничего не дает, а кто-то получает новые возможности — он растет, и ему становится совсем хорошо, потому что все вокруг погибли: еды куча, никто не мешает.

Фото: Microbe World/flickr.com  /  Споры сибирской язвы.

Они могут выдержать долгое кипячение и подолгу не гибнут в дезинфицирующих препаратах

 

[КШ] У людей довольно большая часть ДНК вирусного происхождения. Значит, тут тоже речь идет о горизонтальном переносе. Возможен ли перенос генов от бактерий к людям?

[КС] Нет, у нас с бактериями разные вирусы. У нас нет бактериальных генов, кроме тех, что мы когда-то получили от бактерий, ставших митохондриями в клетках нашего организма. Помните, как возникли клетки, от которых произошли мы и все, кого мы видим в зоопарке? Наш одноклеточный предок захватил некую древнюю бактерию и заставил ее кашу варить — энергию вырабатывать. Но чтобы эта бактерия не прибила нашего предка, большинство генов из нее было перенесено в ядро.

А гены вирусов, про которые вы говорите, действительно составляют у нас солидную часть генома. Это остатки ретровирусов, которые встроились в разные места нашей ДНК. Они встроились так, чтобы мешать работе наших генов, но испортились потихонечку. Некоторые из них, правда, еще могут прыгать по ДНК, и когда они прыгают, то могут возникать неприятные вещи типа рака. Кстати, интересно, что мы довольно сильно отличаемся от обезьян по «вирусному геному», а те 30 тысяч генов, которые кодируют белки, отличаются от обезьяньих гораздо меньше.

  

Это год, когда человек впервые увидел бактерии. Это был голландский натуралист Антони ван Левенгук, усовершенствовавший микроскоп. Как и всех прочих микроскопических существ, он назвал их «анималькули». 

[КШ] Способны ли бактерии наследовать приобретенные признаки?

[КС] Несколько назад опыты показали, что таки да, у бактерий может быть так называемая ламарковская наследственность, связанная с горизонтальным переносом генов. Например, у бактерий открыли некую новую иммунную систему. У людей, которые занимаются оптимизацией штаммов для молочной промышленности, есть большая проблема: вирусы убивают ферментацию, и миллиарды долларов теряются из-за испорченного молока. Если вирус заражает бактерию, все бактерии дохнут, но иногда возникают бактерии, устойчивые к вирусу. Почему?

Оказалось, вовсе не потому, что в популяции изначально были резистентные  бактерии. Механизм возникновения устойчивости обнаружился такой: небольшой кусочек ДНК вируса попадает в геном бактерии и делает ее устойчивой к вирусу. Этот захваченный фрагмент ДНК, примеряется к заходящему вирусу, и если обнаруживается полное соответствие, бактерия вирус убивает. Это как память, которая передается по наследству. Но такая иммунная система не очень эффективна: она работает только при условии, что чужеродная ДНК точно соответствует захваченному куску. Даже одно различие не позволит убить вирус.

Но с точки зрения генных инженеров и ученых, которые хотят лечить всякие генные болезни, этому механизму цены нет — на его основе совсем недавно был создан метод редактирования генома CRISPR, который сейчас не использует только ленивый. Я думаю, первое действительно эффективное лекарство от рака возникнет именно благодаря этой технологии. Есть, например, больной с лейкемией, у него в ДНК изменена лишь одна буква из трех миллиардов. До недавних пор не было технологии, позволяющей найти и изменить единственную опечатку. А эта система способна гарантированно узнать неправильную копию и уничтожить ее. То есть бактериальную иммунную систему фактически научились инсталлировать в человеческую клетку, и она работает как часы. Теперь мы можем заменить любую букву в нашем генетическом коде.

Фото: Microbe World/flickr.com  /  Колония сальмонеллы.

Этот род бактерий назван в честь их открывателя ветеринара Дэниеля Салмона (1850–1914)

 

[КШ] Скоро ли методы редактирования генома позволят нам самим создавать полезных микробов?

[КС] Молекулярная инженерия существует давно — с 1973 года, и изменить бактерию не такая сложная задача. У моих студентов в Сколтехе завтра начинается практикум: они все будут это делать. Но что получится, мы не знаем. Предсказать, как изменение гена или внесение дополнительного гена повлияет на конечный результат, мы пока не можем.

Сейчас в моду входит системная биология, которая пытается предсказать последствия генетических изменений в организме, пытается конструировать какие-то новые генетические сети с требуемыми свойствами. Чтобы кишечная палочка, например, ела нефть, ей нужно ввести некий комплекс генов, который, по мнению исследователей, связан со способностью перерабатывать нефть. Эта задачу очень трудно решить — мы слишком мало знаем. Изменить ген легко, но, скорее всего, то, что получится, не будет работать: вы просто испортите генетический механизм, и палочка умрет либо станет кривая или косая.

  

Зоопарк внутри человека

[КШ] Если они так хорошо приспосабливаются, не обречены ли мы на проигрыш в гонке вооружений с микробами? Рано или поздно появится смертельная инфекция, с которой невозможно будет справиться…

[КС] Эти страхи возникли еще в XIX веке с подачи Пастера, когда вдруг выяснилось, что мы находимся в состоянии войны с коварным противником — микробами. Но реальная ситуация совершенно не такая. Большинство микробов о нас знать не знают, они занимаются своими делами, и мы им глубоко безразличны. Идея, что микробы — это что-то очень плохое, посланное богом за наши прегрешения, совершенно неверна. Мы зависим от микробов гораздо больше, чем они от нас. Наше тело состоит из триллиона клеток — потомков единственной оплодотворенной яйцеклетки. При этом внутри нашего организма находится 10 триллионов бактериальных клеток! Большая часть из них живет в кишечнике и составляет огромный орган, который сейчас называют микробиом.

Обычно говорят, что самый крупный орган человека — печень: она весит больше мозга. Но на самом деле это, конечно, микробиом. Он выполняет массу совершенно необходимых для нас функций. Например, наши клетки вдруг потеряли возможность производить ряд витаминов, необходимых для жизни. Мы можем себе это позволить, потому что в нас живут бактерии, которые производят эти витамины. Они вносят огромный вклад и в работу иммунной системы, защищая нас от вредных бактерий, которых абсолютное меньшинство.

Метагеном — совокупный геном сообщества организмов, живущих вместе. Недавно, например, китайские ученые прочитали метагеном микробов, обнаруженных в смоге Пекина. Их там оказалось очень много, больше тысячи.

Микробиом человека — сообщество бактерий, живущих в нашем кишечнике. Мы никогда не будем одиноки!

Секвенирование — определение последовательности нуклеотидов, из которых состоит ДНК, то есть прочтение генетического кода.

[КШ] Бактерии, которые внутри нас живут, хорошо изучены?

[КС] Ученые совсем недавно поняли всю степень их разнообразия, что у нас внутри целый зоопарк, огромная «темная материя» микробов. Раньше микробиологи изучали только те бактерии, которые им удавалось вырастить в чашке Петри. Но подавляющее их большинство — 99,99% — просто не хотят на наших чашках расти, им не нравится питательная среда, которую мы им предлагаем. А современные методы геномного секвенирования позволяют читать геномы даже бактерий, культивировать которые не получается.

Вот вы можете походить по комнате с пылесосом и засосать воздух, а потом с помощью современных машинок выделить из пыли все ДНК и определить так называемый метагеном комнаты. Метагеном — это набор генов всех организмов, которые присутствовали в анализируемом образце. И в нем вы обнаружите огромное количество генетических следов разнообразных неизвестных бактерий. Если речь идет о метагеноме кишечника, то вы можете найти корреляции между какими-то кусками этих генетических текстов и какими-то свойствами человека — например, продолжительностью его жизни или какими-то патологиями.

  

[КШ] Метагеном каждого человека уникален?

[КС] Человек несет в себе уникальный набор микробов, внутри семьи они обычно похожи. Это важно для диагностики и персональной медицины ближайшего будущего, например для разработки правильной диеты. Диета оказывает огромное влияние на что угодно. Но когда я ем шоколадку, мои клетки получают не какао, сахар и масло, а продукты их глубокого разложения живущими в моем пищеварительном тракте бактериями. Есть такая замечательная вещь, как пересаживание кала, — этот метод в США прошел клиническое испытание на людях и уже используется. Оказывается, лучший способ похудеть — это пересадить себе какашку худого человека, которая, как известно, в основном состоит из его бактерий.

В дальнейшем можно будет на своей странице в соцсетях выставлять не только геном, но и метагеном. И если какой-нибудь Цукерберг или Брин будут иметь доступ к этой информации, они смогут проводить исследования, например, о связи определенной бактерии с желанием, я не знаю, купить айфон. А медики, скажем, выяснят, что все, кто ел огурцы и имел такую-то бактерию, рано умерли. То есть бактерии могут служить диагностическими маркерами заболеваний или какого-то поведения.

 

Таков размер самой крупной бактерии Thiomargarita namibiensis.  Большинство же бактерий имеют размер 0,5–5 мкм. 

[КШ] Сейчас что можно сказать о человеке, проанализировав его метагеном?

[КС] Да почти ничего. Кстати, проанализировав геном, тоже почти ничего пока нельзя сказать. К сожалению, это сложно. Любой человек с точки зрения геномики — это, в общем, одна и та же книжка. Если вы возьмете «Войну и мир» и увеличите ее в тысячу раз, там будет три миллиарда букв. Каждый из нас — произведение, содержащее три миллиарда букв ДНК, но при этом отличаемся друг от друга лишь на 0,1% этой последовательности — на три миллиона букв. Эти «опечатки» обеспечивают нашу индивидуальность и предрасположенность к болезням. Есть очень простые заболевания, как гемофилия у Романовых, причиной которой служит одна-единственная опечатка. Но на возникновение шизофрении или рака влияют десятки и сотни опечаток — пока вычленить все влияния не представляется возможным. С микробиомом то же самое.

[КШ] А как же антибиотики? Получается, они разрушают всё наше уникальное сообщество бактерий?

[КС] Такое ощущение, что, хотя на короткое время антибиотики резко всё меняют, потом микробиом восстанавливается в прежнем виде. Возможно, это связано с аппендиксом. Некоторые ученые утверждают, что аппендикс — это такой резервуар, маленький домик для нашей микрофлоры.

Фото: Shutterstock  /  Heliobacter pylori. Считается, что именно эта бактерия виновна в развитии язвы желудка

 

О чем микробы говорят друг с другом

[КШ] Почему разные страшные эпидемии обычно приходят из Африки? 

[КС] Думаю, это не совсем правильное утверждение, — уверен, например, что туберкулез не оттуда. В Африке просто разнообразные условия и биоразнообразие очень большое. Это такая гигантская лаборатория, в которой можно обкатывать всякие новые варианты. И одна из причин, почему Африку так тяжело было завоевать или покорить. Европейская цивилизация развивалась в схожих климатических условиях. А когда вы движетесь с севера на юг, возникают новые климатические зоны с новыми микробами. То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы.

[КШ] Сами бактерии как-то общаются между собой?

[КС] Безусловно, с помощью химических сигналов. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом. Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга. У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс.

Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов. Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя». В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики.

Фото: Andrii Muzyka/Shutterstock  /  Бактерии и вирусы в сосуде человека среди клеток крови

 

[КШ] То есть антибиотик — это сигнал типа «убей себя», а не какой-то яд, который, допустим, мембраны разрушает?

[КС] Да, антибиотик — это информация, сигнальная молекула, которая изменяет экспрессию генов. В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают. А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов.

 

Война с микробами: антибиотики и бактериофаги

[КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках.

[КС] Они не появляются с конца 80-х годов. Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо. Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез. Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили. Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико.

Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты.

Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ. Потом мы это вещество должны получить, поймать, охарактеризовать, выявить его структуру, показать, что это вещество действует на клетку, понять, как именно действует, почему оно проходит в клетку, почему убивает клетки и при этом не убивает ту клетку, которая его производит, как вещество делается.

Фото: NOBEASTSOFIERCE/Shutterstock  /  Раскрашенная электронная миктофотография бактерии сальмонеллы, возбудителя самльнонеллеза

 

[КШ] То есть у вас в лаборатории есть претенденты на новые антибиотики?

[КС] У нас есть некоторое количество новых, еще не описанных веществ с интересными функциями. Но мы изучаем их с точки зрения механизмов действия, а не с точки зрения практического применения.

Понимаете, найти какое-то вещество, которое убивает бактерию, несложно, таких веществ десятки тысяч. Проблема в том, что антибиотик не должен вызывать в клетках человека никаких разрушений. Еще вы должны будете доказать, что, если он попадет в кровь, то будет поглощаться и доставляться к источнику инфекции в требуемой концентрации. Он должен быть достаточно стабилен, его нужно произвести в больших количествах, и это должно быть экономически выгодно. С точки зрения промышленного производства всё это гораздо важнее, чем просто найти антибиотик.

Столько разновидностей бактерий живёт у вас во рту (приблизительная оценка). При среднем поцелуе партнеры обмениваются примерно 80 миллионами бактерий. 

[КШ] Так все-таки, не уничтожат нас микробы, пока мы будем решать все эти вопросы? Появляются новые болезни, бактерии быстро приобретают устойчивость к антибиотикам… 

[КС] Это, конечно, ужас, но не ужас-ужас-ужас. Прямо сейчас никто не вымирает. Новых болезней немного, а вот масса заболеваний, которые до недавних пор воспринимались как генетические или связанные с какими-либо дефектами, как выясняется, имеют бактериальную природу: от диабета до колитов и даже шизофрении — оказывается, чтобы завелись тараканы в голове, нужны кое-какие бактерии в животе.

[КШ] Сможем ли мы когда-нибудь победить все инфекции, найти средство от всех вредных микробов?

[КС] Нет, излечить всё и вся, конечно же, не получится. Взять те же антибиотики: если они очищают от микробов какую-то нишу, где те спокойно жили, там обязательно заводится кто-нибудь другой. Все-таки жизнь существует уже 3,5 миллиарда лет и научилась приспосабливаться ко всяким разностям. Особенно учитывая, что бактерии постоянно обмениваются своими генами и вирусами. А мы — та среда, в которой происходит их отбор. Когда среда меняется, меняются и они.

Фото: Shutterstock  /  Бактерия путешествует по кровяному руслу

 

[КШ] Кроме антибиотиков у нас есть еще одно супероружие — бактериофаги.

[КС] Бактериофаги — это вирусы бактерий, их огромное количество. Бактериям в этом смысле жить гораздо тяжелее, чем нам. Поскольку каждый бактериофаг специфичен к той бактерии, на которой паразитирует, они могут быть эффективнее, чем антибиотики. Бактериофаги открыли лет сто назад, и изначально именно их планировали использовать против бактерий. Но открытие антибиотиков позволило на время забыть про бактериофагов.

Тем не менее в бывших соцстранах бактериофаги широко применялись, потому что, с одной стороны, с антибиотиками у нас были проблемы, а с другой — человек, открывший бактериофаги, Феликс Д’Эрелль, большой любитель путешествий и экзотических женщин, приехал в середине тридцатых готов в Грузию, нашел там всё, что любил, и создал институт бактериофагов. Потом, правда, удрал, говорят, не поделил женщину с каким-то энкавэдэшником. Но институт остался, там же был завод, где делались таблетки, такие заводы и сейчас есть в Нижнем Новгороде и Перми. У советского солдата в личном пакетике всегда была таблетка интестифага. Кстати, большинство войн сегодня  проигрывается, как и во времена Римской империи, не из-за поражений, а из-за поносов.

[КШ] Чем бактериофаги хуже антибиотиков? 

[КС] По идее, бактериофаг очень удобен, потому что убивает именно ту бактерию, под которую заточен. Но он сам по себе вызывает иммунный ответ организма. Еще одна проблема — конструирование новых бактерий: бактериофаги часто переносят ДНК от одной бактерии к другой. И масса новых патогенов — это обычные бактерии, которые просто подцепили вирус. Поэтому есть сильное подозрение, что широкое использование бактериофагов могло бы привести к развитию новых опасных патогенов.

Точных ответов никто не знает, слишком мало было надежных исследований. На Западе интерес к этой теме сейчас возрос: например, бактериофагами лечат «ножки Буша», на которых развивается сальмонелла, — опрыскивают их, как спреем, и увеличивают срок годности.

У бактериофагов есть гены, которые позволяют убить клетку. И если вы умеете читать геномы бактериофагов и определять нужные гены, то можете просто применять их как инструмент для выделения генов, продукты которых могут быть использоваться как кандидаты в антибиотики.

Опубликовано в журнале «Кот Шрёдингера» №4 (06) за апрель 2015 г.

  

Источник: kot.sh

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

 

 

1.ОСНОВНОЙ НОСИТЕЛЬ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ БАКТЕРИЙ:

1.    плазмида

2.    нуклеоид

3.    транспозон

4.    ядро

2.ФУНКЦИЮ ДВИЖЕНИЯ У БАКТЕРИЙ ВЫПОЛНЯЮТ:

1.    пили

2.    псевдоподии

3.    жгутики

4.    капсулы

3.ОСНОВНОЕ ВЕЩЕСТВО (БИОГЕТЕРОПОЛИМЕР) КЛЕТОЧНОЙ СТЕНКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1.      пептидогликан

2.      липополисахарид

3.      волютин

4.      флагеллин

4.ОКРАСКА БАКТЕРИЙ ПО МЕТОДУ ГРАМА ПОЗВОЛЯЕТ ВЫЯВИТЬ:

1.      наличие жгутиков

2.      наличие ядра

3.      наличие кислотоустойчивости у бактерии

4.      особенности расположения включений

5.      особенности строения клеточной стенки

5.ТЕМНОПОЛЬНАЯ МИКРОСКОПИЯ ПОЗВОЛЯЕТ ВЫЯВИТЬ:

1.      наличие и характер подвижности бактерий

2.      наличие капсулы

3.      наличие споры

4.      особенности строения клеточной стенки

5.      особенности расположения включений

6.ФУНКЦИИ СПОР БАКТЕРИЙ:

1.      защита генетического материала от неблагоприятных воздействий окружающей среды

2.      защита генетического материала от неблагоприятных воздействий в организме человека

3.      размножение

4.      запас питательных веществ

5.      антифагоцитарные свойства

7.МИКРООРГАНИЗМЫ, ИМЕЮЩИЕ ИЗВИТУЮ ФОРМУ:

1. Chlamydia trachomatis

2. Corynebacterium diphtheriae

3. Leptospira interrogans

4. Mycoplasma pneumoniae

5. Ureaplasma urealyticum

8.МИКРООРГАНИЗМЫ, ИМЕЮЩИЕ ИЗВИТУЮ ФОРМУ:

1. Rickettsia prowazekii

2. Candida albicans

3. Treponema pallidum

4. Legionella pneumophila

5. Streptococcus mutans

9.К ЭУКАРИОТАМ ОТНОСЯТСЯ:

1.      стафилококки

2.      клостридии

3.      стрептококки

4.      кандиды

10.В ОСНОВУ КЛАССИФИКАЦИИ БАКТЕРИЙ НА ГРАМПОЛОЖИТЕЛЬНЫЕ И ГРАМОТРИЦАТЕЛЬНЫЕ ПОЛОЖЕНО СТРОЕНИЕ:

1.      клеточной стенки

2.      цитоплазматической мембраны

3.      жгутиков

4.      эндоспор

11.ЛИПОПОЛИСАХАРИД БАКТЕРИАЛЬНОЙ КЛЕТКИ РАСПОЛОЖЕН В:

1. цитоплазматической мембране микоплазм

2. наружной мембране клеточной стенки грамположительных бактерий

3. мезосоме

4.    наружной мембране клеточной стенки грамотрицательных бактерий

5.    цитоплазме

12.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1.    актиномицеты

2.    хламидии

3.    микобактерии

4.      спирохеты

13.НЕ ИМЕЮТ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Бактерии

2.      Прионы

3.      Простейшие

4.      Грибы

14.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1.      Токсоплазмоз

2.      Гонорея

3.      Актиномикоз

4.      Лепра

5.      Кандидоз

15.ЭУКАРИОТЫ НЕ ИМЕЮТ:

1.      Оформленного ядра

2.      Рибосом

3.      Митохондрий

4.      Нуклеоида

5.      Клеточного строения

16.В СОСТАВЕ КЛЕТОЧНОЙ СТЕНКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ ИМЕЕТСЯ:

1.      Наружная мембрана

2.      Тейхоевые кислоты

3.      Эргостерол

4.      Липополисахарид

5.      Волютин

17.АКТИНОМИЦЕТЫ – ЭТО:

1.      Грибы

2.      Извитые бактерии

3.      Ветвящиеся бактерии

4.      Простейшие

5.      Гельминты

18.ПРОКАРИОТЫ НЕ ИМЕЮТ:

1.      Клеточного строения

2.      Оформленного ядра

3.      Рибосом

4.      Нуклеоида

19.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      Salmonella typhi

2.      Clostridium tetani

3.      Bordetella pertussis

4.      Mycobacterium tuberculosis

5.      Vibrio cholerae

20.К КИСЛОТОУСТОЙЧИВЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:

1.      Микоплазмы

2.      Вибрионы

3.      Шигеллы

4.      Микобактерии

5.      Спирохеты

21.МЕТОДЫ ИЗУЧЕНИЯ СТРУКТУРНОЙ ОРГАНИЗАЦИИ ВИРУСОВ:

1.      Световая микроскопия

2.      Фазово-контрастная микроскопия

3.      Темнопольная микроскопия

4.      Электронная микроскопия

5.      Люминисцентная микроскопия

22.ЛПС ВХОДИТ В СОСТАВ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1.      Стафилококков

2.      Микобактерий

3.      Шигелл

4.      Клостридий

5.      Актиномицетов

23.МИКРООРГАНИЗМЫ, У КОТОРЫХ ОТСУТСТВИЕ КЛЕТОЧНОЙ СТЕНКИ ВСЕГДА ДЕТЕРМИНИРОВАНО ГЕНЕТИЧЕСКИ:

1.      Протопласты

2.      Хламидии

3.      Сферопласты

4.      Микоплазмы

5.      Риккетсии

24.БАКТЕРИИ, ИМЕЮЩИЕ МНОГО ЖГУТИКОВ ВОКРУГ КЛЕТКИ:

1.      Амфитрихи

2.      Перитрихи

3.      Спирохеты

4.      Микоплазмы

5.      Порины

25.МИКРООРГАНИЗМЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОЙ СТЕНКИ:

1.      Амфитрихи

2.      Перитрихи

3.      Спирохеты

4.      Микоплазмы

5.      Порины

26.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Прокариоты

2.      Порины

3.      Простейшие

4.      Прионы

27.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ХАРАКТЕРИЗУЮТ:

1.      Устойчивость во внешней среде

2.      Устойчивость к действию физических факторов

3.      Чувствительность к бактериофагам

4.      Отношение к определенному методу окрашивания

28.УСТОЙЧИВОСТЬ НЕСПОРООБРАЗУЮЩИХ БАКТЕРИЙ К КИСЛОТАМ, ЩЕЛОЧАМ И СПИРТАМ ОБУСЛОВЛЕНА ВЫСОКИМ СОДЕРЖАНИЕМ В КЛЕТОЧНОЙ СТЕНКЕ:

1.      Пептидогликана

2.      Тейхоевых кислот

3.      Пептидных мостиков

4.      Восков и липидов

29.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ:

1.      Бациллы

2.      Мукор

3.      Кандиды

4.      Клостридии

5.      Стрептококки

30.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ:

1.      Аспергиллы

2.      Мукор

3.      Кандиды

4.      Клостридии

31.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ:

1.      Пенициллы

2.      Мукор

3.      Кандиды

4.      Актиномицеты

32.ГИФАЛЬНЫЕ ГРИБЫ:

1.      Актиномицеты

2.      Мукор

3.      Кандиды

4.      Микобактерии

5.      Сахаромицеты

33.ГИФАЛЬНЫЕ ГРИБЫ:

1.      Актиномицеты

2.      Аспергиллы

3.      Кандиды

4.      Микобактерии

34.КОККИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1.      Стрептобациллы

2.      Мукор

3.      Кандида

4.      Стрептококки

5.      Стафилококки

35.КОККИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1. Стрептобациллы

2.    Сарцины

3.    Диплобациллы

4. Стрептококки

5. Стафилококки

36.КОККИ, РАСПОЛАГАЮЩИЕСЯ ПОПАРНО:

1.      Диплококки

2.      Сарцины

3.      Диплобациллы

4.      Стрептококки

5.      Стафилококки

37.КОККИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ СКОПЛЕНИЙ, НАПОМИНАЮЩИХ ГРОЗДИ ВИНОГРАДА:

1.      Диплококки

2.      Сарцины

3.      Тетракокки

4.      Стрептококки

5.      Стафилококки

38.БАКТЕРИИ, ДИАМЕТР СПОР У КОТОРЫХ БОЛЬШЕ ТОЛЩИНЫ КЛЕТКИ:

1.      Бациллы

2.      Мукор

3.      Кандиды

4.      Клостридии

5.      Сарцины

39.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1.      Стафилококки

2.      Риккетсии

3.      Эшерихии

4.      Микобактерии

5.      Актиномицеты

40.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1.    Криптоспоридии

2.    Хламидии

3.    Микрококки

4.      Микобактерии

5.      Актиномицеты

41.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1.      M. pneumoniae

2.      M. leprae

3.      S. pneumoniae

4.      L. pneumophila

5.      A. bovis

42.ФУНКЦИЯ ДВИЖЕНИЯ У БАКТЕРИЙ

1.      Пили

2.      Жгутики

3.      Псевдоподии

4.      Порины

5.      Включения

43.АДГЕЗИЯ БАКТЕРИЙ К ЭУКАРИОТИЧЕСКИМ КЛЕТКАМ

1.      Пили

2.      Жгутики

3.      Псевдоподии

4.      Порины

5.      Включения

44.ПРОЧНЫЙ СЛИЗИСТЫЙ СЛОЙ, РАСПОЛАГАЮЩИЙСЯ СНАРУЖИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1.    Чехол

2.    Мукоид

3.    Наружная мембрана

4.    Капсула

5.    Капсид

45.ПРОЧНЫЙ СЛИЗИСТЫЙ СЛОЙ, РАСПОЛАГАЮЩИЙСЯ СНАРУЖИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1.      Нуклеокапсид

2.      Цитоплазматическая мембрана

3.      Наружная мембрана

4.      Капсула

5.      Капсид

46.ПРОЧНЫЙ СЛИЗИСТЫЙ СЛОЙ, РАСПОЛАГАЮЩИЙСЯ СНАРУЖИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1.      Нуклеокапсид

2.      Цитоплазматическая мембрана

3.      Кутикула

4.      Капсула

5.      Пелликула

47.ДЛЯ ОКРАСКИ СПОР У БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1.      Окраску по Нейссеру

2.      Окраску по Граму

3.      Окраску по Бурри-Гинсу

4.      Окраску по Ауеске

48.ДЛЯ ОКРАСКИ СПОР У БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1.    Окраску по Здродовскому

2.    Окраску по Леффлеру

3.    Окраску по Бурри-Гинсу

4.    Окраску по Ауеске

49.ОРГАНЫ ДВИЖЕНИЯ У БАКТЕРИЙ:

1.      Перитрихи

2.      Пили

3.      Трихомонады

4.      Псевдоподии

5.      Жгутики

50.БАКТЕРИИ, ПОКРЫТЫЕ ЖГУТИКАМИ СО ВСЕХ СТОРОН КЛЕТКИ:

1.      Перитрихи

2.      Амфитрихи

3.      Трихомонады

4.      Лофотрихи

5.      Монотрихи

51.БАКТЕРИИ, ПОКРЫТЫЕ ЖГУТИКАМИ СО ВСЕХ СТОРОН КЛЕТКИ:

1.      Перитрихи

2.      Амфитрихи

3.      Лофотрихи

4.      Монотрихи

52.БАКТЕРИИ, ПОКРЫТЫЕ ЖГУТИКАМИ СО ВСЕХ СТОРОН КЛЕТКИ:

1.      Перитрихи

2.      Амфитрихи

3.      Псевдоподии

4.      Лофотрихи

5.      Монотрихи

53.БАКТЕРИИ, ИМЕЮЩИЕ ОДИН ЖГУТИК:

1.      Перитрихи

2.      Амфитрихи

3.      Лофотрихи

4.      Монотрихи

54.БАКТЕРИИ, ИМЕЮЩИЕ ПУЧОК ЖГУТИКОВ НА ОДНОМ ПОЛЮСЕ КЛЕТКИ:

1.      Перитрихи

2.      Амфитрихи

3.      Лофотрихи

4.      Монотрихи

55.БАКТЕРИИ, ИМЕЮЩИЕ ЖГУТИКИ НА ДВУХ ПОЛЮСАХ КЛЕТКИ:

1.      Перитрихи

2.      Амфитрихи

3.      Лофотрихи

4.      Монотрихи

56.ЛИПОПОЛИСАХАРИД БАКТЕРИАЛЬНОЙ КЛЕТКИ РАСПОЛОЖЕН В:

1.    цитоплазматической мембране

2.    наружной мембране грамположительных бактерий

3.    мезосоме

4.    наружной мембране грамотрицательных бактерий

5.    суперкапсиде

57.ДЛЯ ОБНАРУЖЕНИЯ КАПСУЛ У БАКТЕРИЙ В ЧИСТОЙ КУЛЬТУРЕ ИСПОЛЬЗУЮТ ОКРАСКУ:

1.      По Цилю-Нельсену

2.      По Ауеске

3.      По Граму

4.      По Бурри-Гинсу

58.ТАКСОНОМИЧЕСКАЯ КАТЕГОРИЯ, ОБЪЕДИНЯЮЩАЯ ВИДЫ МИКРООРГАНИЗМОВ С НАИБОЛЬШИМ КОЛИЧЕСТВОМ СХОДНЫХ ПРИЗНАКОВ И СВОЙСТВ:

1.      Семейство

2.      Род

3.      Вид

4.      Домен

59.БАКТЕРИИ, У КОТОРЫХ ОТСУТСТВИЕ КЛЕТОЧНОЙ СТЕНКИ ВСЕГДА ДЕТЕРМИНИРОВАНО ГЕНЕТИЧЕСКИ:

1.      Протопласты

2.      Хламидии

3.      Сферопласты

4.      Уреоплазмы

5.      Л-формы

60.БАКТЕРИИ, ИМЕЮЩИЕ МНОГО ЖГУТИКОВ ВОКРУГ КЛЕТКИ:

1.      Амфитрихи

2.      Перитрихи

3.      Спирохеты

4.      Трихомонады

5.      Порины

61.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОЙ СТЕНКИ:

1.      Амфитрихи

2.      Спириллы

3.      Спирохеты

4.      Вирусы

5.      Порины

62.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Прокариоты

2.      Порины

3.      Простейшие

4.      Прионы

5.      Архебактерии

63.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ХАРАКТЕРИЗУЮТ:

1.      Устойчивость во внешней среде

2.      Устойчивость к действию кислорода

3.      Чувствительность к бактериофагам

4.      Отношение к определенному методу окрашивания

5.      Форму и размер клеток микроорганизмов

64.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ХАРАКТЕРИЗУЮТ:

1.      Чувствительность к антибиотикам

2.      Устойчивость к действию кислорода

3.      Колонии микроорганизмов

4.      Отношение к определенному методу окрашивания

5.      Форму и размер клеток микроорганизмов

65.УСТОЙЧИВОСТЬ НЕСПОРООБРАЗУЮЩИХ БАКТЕРИЙ К КИСЛОТАМ, ЩЕЛОЧАМ И СПИРТАМ ОБУСЛОВЛЕНА ВЫСОКИМ СОДЕРЖАНИЕМ В КЛЕТОЧНОЙ СТЕНКЕ:

1.      Пептидогликана

2.      Тейхоевых кислот

3.      Пептидных мостиков

4.      Восков и миколовых кислот

5.      Волютина

66.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ:

1.      Аспергиллы

2.      Мукор

3.      Кандиды

4.      Пенициллы

5.      Трихомонады

67. ПАЛОЧКОВИДНЫЕ БАКТЕРИИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1.      Бациллы

2.      Вибрионы

3.      Трепонемы

4.      Сарцины

5.      Стрептококки

68.ПАЛОЧКОВИДНЫЕ БАКТЕРИИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1.      Бациллы

2.      Вибрионы

3.      Трепонемы

4.      Спириллы

5.      Бифидобактерии

69.ПАЛОЧКОВИДНЫЕ БАКТЕРИИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1.      Стрептобациллы

2.      Диплококки

3.      Стрептококки

4.      Борелии

5.      Лептоспиры

70.БАКТЕРИИ, ДИАМЕТР СПОР У КОТОРЫХ СООТВЕТСТВУЕТ ТОЛЩИНЕ ВЕГЕТАТИВНОЙ КЛЕТКИ:

1.      Бациллы

2.      Мукор

3.      Риккетсии

4.      Клостридии

5.      Стрептококки

71.БАКТЕРИИ, ДИАМЕТР СПОР У КОТОРЫХ СООТВЕТСТВУЕТ ТОЛЩИНЕ ВЕГЕТАТИВНОЙ КЛЕТКИ:

1.      Бациллы

2.      Мукор

3.      Риккетсии

4.      Хламидии

5.      Аспергиллы

72.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1.      Клебсиеллы

2.      Микроспоридии

3.      Бабезии

4.      Микобактерии

5.      Микоплазмы

73.ФУНКЦИЯ ДВИЖЕНИЯ У БАКТЕРИЙ:

1.      Пили

2.      Жгутики

3.      Псевдоподии

4.      Порины

5.      Пелликула

74.АДГЕЗИЯ БАКТЕРИЙ К ЭУКАРИОТИЧЕСКИМ КЛЕТКАМ:

1.      Пили

2.      Жгутики

3.      Псевдоподии

4.      Порины

5.      Нуклеокапсид

75.ПРОЧНЫЙ СЛИЗИСТЫЙ СЛОЙ, РАСПОЛАГАЮЩИЙСЯ СНАРУЖИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1.      Чехол

2.      Мукоид

3.      Наружная мембрана

4.      Капсула

5.      Гликокаликс

76.ДЛЯ ОКРАСКИ СПОР У БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1.      Окраску по Нейссеру

2.      Окраску по Здродовскому

3.      Окраску по Бурри-Гинсу

4.      Окраску по Ауеске

5.      Окраску по Романовскому-Гимзе

77.ОРГАНЫ ДВИЖЕНИЯ У БАКТЕРИЙ:

1.      Перитрихи

2.      Пили

3.      Трихомонады

4.      Псевдоподии

5.      Жгутики

78.ВОЛЮТИН КОРИНЕБАКТЕРИЙ РАСПОЛОЖЕН В:

1.      Цитоплазматической мембране

2.      Наружной мембране грамположительных бактерий

3.      Мезосоме

4.      Наружной мембране грамотрицательных бактерий

5.      Цитоплазме

79.ДЛЯ ОБНАРУЖЕНИЯ ЖГУТИКОВ У БАКТЕРИЙ ИСПОЛЬЗУЮТ ОКРАСКУ:

1.      По Цилю-Нельсену

2.      По Ауеске

3.      По Граму

4.      По Бурри-Гинсу

5.      По Леффлеру

80. ТАКСОНОМИЧЕСКАЯ КАТЕГОРИЯ, ОБЪЕДИНЯЮЩАЯ ВИДЫ МИКРООРГАНИЗМОВ С НАИБОЛЬШИМ КОЛИЧЕСТВОМ СХОДНЫХ ПРИЗНАКОВ И СВОЙСТВ:

1.      Семейство

2.      Род

3.      Вид

4.      Домен

5.      Биовар

81.ВТОРОЕ СЛОВО В ЛАТИНСКОМ НАЗВАНИИ МИКРООРГАНИЗМОВ ОБОЗНАЧАЕТ:

1.      Семейство

2.      Род

3.      Вид

4.      Домен

5.      Биовар

82.ПЕРВОЕ СЛОВО В ЛАТИНСКОМ НАЗВАНИИ МИКРООРГАНИЗМОВ ОБОЗНАЧАЕТ:

1.      Семейство

2.      Род

3.      Вид

4.      Домен

5.      Биовар

83.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      эшерихии

2.      шигеллы

3.      клостридии

4.      риккетсии

84.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      бациллы

2.      бифидобактерии

3.      спирохеты

4.      риккетсии

85.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      клостридии

2.      бифидобактерии

3.      вибрионы

4.      кандиды

86.БАКТЕРИИ, В КЛЕТОЧНОЙ СТЕНКЕ КОТОРЫХ СОДЕРЖИТСЯ МНОГОСЛОЙНЫЙ ПЕПТИДОГЛИКАН:

1.      грамположительные

2.      грамотрицательные

3.      микоплазмы

4.      протопласты

87.МИКРООРГАНИЗМЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОЙ СТЕНКИ:

1.      микоплазмы

2.      актиномицеты

3.      риккетсии

4.      хламидии

88.БИОЛОГИЧЕСКАЯ РОЛЬ ПЛАЗМИД:

1.      внехромосомные факторы наследственности

2.      локомоторная функция

3.      инвазия бактерий

4.      регуляция осмотического давления

89.НЕ ИМЕЮТ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      вирусы

2.      бактерии

3.      грибы

4.      простейшие

90.ГРАМПОЛОЖИТЕЛЬНЫЕ ПАЛОЧКИ – ВОЗБУДИТЕЛИ:

1.      газовой гангрены

2.      туляремии

3.      колиэнтерита

4.      бруцеллеза

91.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1.      бифидобактерии

2.      трепонемы

3.      лептоспиры

4.      аскомицеты

92.ПРОСТЕЙШИЕ:

1.      относятся к эукариотам

2.      относятся к прокариотам

3.      окрашиваются по Цилю-Нельсену

4.      имеют дизъюнктивный способ репродукции

93. ВИРУСЫ:

1.      имеют РНК и ДНК

2.      имеют капсид

3.      окрашиваются по Граму

4.      изучаются в световом микроскопе

94.ВИРУСЫ:

1.      имеют РНК или ДНК

2.      имеют клеточное строение

3.      имеют нуклеоид

4.      изучаются в световом микроскопе

95.ВИРУСЫ:

1.      имеют РНК и ДНК

2.      имеют клеточное строение

3.      размножаются дизъюнктивно

4.      изучаются в световом микроскопе

96.ВИРУСЫ:

1.      имеют клеточное строение

2.      измеряют в нм

3.      изучают в световом микроскопе

4.      содержат нуклеоид

97.ВИРУСЫ:

1.      имеют клеточное строение

2.      имеют нуклеокапсид

3.      изучаются в световом микроскопе

4.      содержат нуклеоид

98.ВИРУСЫ:

1.      имеют РНК и ДНК

2.      имеют клеточное строение

3.      имеют нуклеоид

4.      изучаются в электронном микроскопе

99.САРЦИНЫ:

1.      Относятся к простейшим

2.      Являются эукариотами

3.      Являются кокками

4.      Грамотрицательные палочки

100.АМЕБЫ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

101.АМЕБЫ:

1.      Образуют цисты

2.      Образуют жгутики

3.      Образуют споры

4.      Образуют цепочки из кокков

102.ПЛАЗМОДИИ МАЛЯРИИ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

103.АСКОМИЦЕТЫ:

1.      Являются грибами

2.      Грамположительные палочки

3.      Являются кокками

4.      Являются бактериями

104.АКТИНОМИЦЕТЫ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

105.РИККЕТСИИ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются вирусами

4.      Грамположительные палочки

106.БИФИДОБАКТЕРИИ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

107.ХЛАМИДИИ:

1.      Относятся к простейшим

2.      Являются эукариотами

3.      Выявляются внутриклеточно

4.      Извитые бактерии

108.ХЛАМИДИИ:

1.      Образуют споры

2.      Являются эукариотами

3.      Кислотоустойчивые бактерии

4.      Грамотрицательные бактерии

109.ТОКСОПЛАЗМЫ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

110.ЛЯМБЛИИ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

111.ТРИПАНОСОМЫ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

112.ТРЕПОНЕМЫ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

113.БОРРЕЛИИ:

1.      Относятся к простейшим

2.      Являются прокариотами

3.      Являются кокками

4.      Грамотрицательные палочки

114.ОСНОВНАЯ ТАКСОНОМИЧЕСКАЯ ЕДИНИЦА В НОМЕНКЛАТУРЕ МИКРООРГАНИЗМОВ

1.      царство

2.      домен (империя)

3.      вид

4.      семейство

115.СОВОКУПНОСТЬ МИКРООРГАНИЗМОВ С ВНУТРИВИДОВЫМИ ОТЛИЧИЯМИ ПО БИОЛОГИЧЕСКИМ СВОЙСТВАМ

1.      эковар

2.      серовар

3.      биовар

4.      хемовар

5.      фаговар

116.СОВОКУПНОСТЬ МИКРООРГАНИЗМОВ С ВНУТРИВИДОВЫМИ ОТЛИЧИЯМИ ПО ФЕРМЕНТАТИВНОЙ АКТИВНОСТИ

1.      эковар

2.      серовар

3.      биовар

4.      хемовар

5.      фаговар

117.ОСНОВНОЙ НОСИТЕЛЬ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ БАКТЕРИЙ

1.      плазмида

2.      нуклеоид

3.      транспозон

4.      ядро

118.ОСНОВНОЙ НОСИТЕЛЬ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ БАКТЕРИЙ

1.      плазмида

2.      нуклеоид

3.      нуклеокапсид

4.      ядро

119.СТРУКТУРА БАКТЕРИАЛЬНОЙ КЛЕТКИ, ПОЗВОЛЯЮЩАЯ ПЕРЕЖИВАТЬ НЕБЛАГОПРИЯТНЫЕ УСЛОВИЯ ВНЕШНЕЙ СРЕДЫ

1.      спора

2.      капсула

3.      клеточная стенка

4.      рибосомы

5.      мезосомы

120.БАКТЕРИИ, У КОТОРЫХ ЖГУТИКИ РАСПОЛАГАЮТСЯ ПО ВСЕЙ ПОВЕРХНОСТИ БАКТЕРИАЛЬНОЙ КЛЕТКИ

1.      монотрих

2.      амфитрих

3.      лофотрих

4.      перитрих

121.ОРГАН ДВИЖЕНИЯ БАКТЕРИЙ

1.      пили

2.      псевдоподии

3.      жгутики

4.      капсула

122.БАКТЕРИИ, ИМЕЮЩИЕ ОДИН ЖГУТИК

1.      перитрих

2.      амфитрих

3.      лофотрих

4.      монотрих

123.СПОСОБ РАЗМНОЖЕНИЯ БАКТЕРИЙ

1.      спорообразование

2.      бинарное деление

3.      почкование

4.      фрагментация  

124.СУЩНОСТЬ НАУЧНОГО ОТКРЫТИЯ Д.И.ИВАНОВСКОГО

1. создание первого микроскопа

2. открытие вирусов

3.      открытие явления фагоцитоза

4. получение антирабической вакцины

5. открытие явления трансформации

125.МИКРООРГАНИЗМЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОЙ СТЕНКИ

1.      хламидии

2.      кандиды

3.      микоплазмы

4.     актиномицеты

126.ТРЕПОНЕМЫ:

1.      Имеют 10-12 мелких завитков

2.      Имеют форму кокков

3.      Грамположительны

4.      Неподвижны

127.НУКЛЕОИД БАКТЕРИЙ:

1.      Содержит 2-3 ядрышка

2.      Нить ДНК замкнута в кольцо

3.      Связан с ЛПС

4.      Имеет ядерную оболочку

128.ЗАСЛУГОЙ КАКОГО УЧЁНОГО ЯВЛЯЕТСЯ ОТКРЫТИЕ ХОЛЕРНОГО ВИБРИОНА

1.      Р.Кох

2.      Л.Пастер

3.      И.И.Мечников

4.      Д.И.Ивановский

5.      Л.А.Тарасевич

129.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1.      Актиномицеты

2.      Спириллы

3.      Вибрионы

4.      Спирохеты

130.ЗАСЛУГОЙ КАКОГО УЧЁНОГО ЯВЛЯЕТСЯ ИЗОБРЕТЕНИЕ ВАКЦИНЫ ПРОТИВ БЕШЕНСТВА

1.      Р.Кох

2.      Л.Пастер

3.      И.И.Мечников

4.      Д.И.Ивановский

5.      Л.А.Тарасевич

131.ОДНОЙ ИЗ ГЛАВНЫХ ЗАСЛУГ И.И.МЕЧНИКОВА В РАЗВИТИИ МИКРОБИОЛОГИИ ЯВЛЯЕТСЯ

1.      впервые предложил метод выделения чистой культуры

2.      создание фагоцитарной теории иммунитета

3.      открытие вирусов

4.      изучение круговорота веществ в природе

5.      изобретение вакцины против бешенства

132.ТЕМНОПОЛЬНАЯ МИКРОСКОПИЯ ПОЗВОЛЯЕТ ВЫЯВИТЬ

1.      наличие и характер подвижности бактерий

2.      наличие капсулы

3.      наличие споры

4.      особенности строения клеточной стенки

5.      особенности расположения включений

133.МЕТОД НЕЙССЕРА ИСПОЛЬЗУЕТСЯ ДЛЯ:

1.      выявления спор

2.      обнаружения жгутиков

3.      выявления зерен волютина

4.      окраски жировых включений

5.      окраски ядерной субстанции

134.НАЗОВИТЕ МЕТОД, ПРИМЕНЯЕМЫЙ ДЛЯ ОКРАСКИ ВОЗБУДИТЕЛЕЙ ТУБЕРКУЛЕЗА

1.      Циля-Нильсена

2.      Ауески

3.      Бурри-Гинса

4.      Нейссера

5.      Здродовского

135.КИСЛОТОУСТОЙЧИВОСТЬ БАКТЕРИЙ ОБЕСПЕЧИВАЕТ:

1.      наличие капсулы

2.      многослойность пептидогликана клеточной стенки

3.      присутствие в клеточной стенке и цитоплазме липидов, восковых веществ и оксикислот

4.      наличие включений волютина

5.      отсутствие клеточной стенки

136.МИКРОСКОП СОЗДАЛ:

1.      Антони ван Левенгук

2.      Дмитрий Ивановский

3.      Лаццаро Спаланцани

4.      Илья Мечников

5.      Александр Флеминг

137.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      Salmonella typhi

2.      Clostridium tetani

3.      Bordetella pertussis

4.      Mycobacterium tuberculosis

5.      Vibrio cholerae

138.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1.      Актиномицеты

2.      Хламидии

3.      Микобактерии

4.      Спирохеты

139.ЛИПОПОЛИСАХАРИД БАКТЕРИАЛЬНОЙ КЛЕТКИ РАСПОЛОЖЕН В:

1. Цитоплазматической мембране

2. Наружной мембране грамположительных бактерий

3. Мезосоме

4.      Наружной мембране грамотрицательных бактерий

5.      Цитоплазме

140.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1.      Стафилококки

2.      Стрептококки

3.      Эшерихии

4.      Микобактерии

5.      Микоплазмы

141.БИОЛОГИЧЕСКАЯ РОЛЬ ПЛАЗМИД

1.      внехромосомные факторы наследственности

2.      локомоторная функция

3.      инвазия бактерий

4.      спорообразование

142.БАКТЕРИИ, ИМЕЮЩИЕ ЖГУТИКИ НА ОБОИХ ПОЛЮСАХ

1.      амфитрихи

2.      симпатрихи

3.      перитрихи

4.      лофотрихи

5.      монотрихи

143.КОККИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК

1.      менигококки

2.      гонококки

3.      клостридии

4.      стрептококки

5.      стафилококки

144.ФУНКЦИИ ПИЛЕЙ I ТИПА

1.      дополнительный запас питательных веществ

2.      защита от неблагоприятных условий внешней среды

3.      обеспечение адгезии и питания клетки

4.      участие в росте и делении клетки

5.      участие в движении

145.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ – ЭТО

1.      способность вызвать инфекцию

2.      форма, строение, структура и взаиморасположение

3.      способность разлагать белки и углеводы

4.      отношение к окраске

5.      тип и характер роста на средах

146.АНТИРАБИЧЕСКАЯ ВАКЦИНА ВПЕРВЫЕ ПОЛУЧЕНА

1.      Мечниковым

2.      Кохом

3.      Сэбином

4.      Солком

5.      Пастером

147.ВЕЩЕСТВА, ОБЕСПЕЧИВАЮЩИЕ ТЕРМОУСТОЙЧИВОСТЬ СПОР

1.      липотейхоевые кислоты

2.      миколовые кислоты

3.      глутаминовые кислоты

4.      дипиколиновая кислота + ионы Са

5.      тейхоевые кислоты

148.МИКРООРГАНИЗМЫ, ОТЛИЧАЮЩИЕСЯ ПО АНТИГЕННЫМ СВОЙСТВАМ

1.      серовары

2.      фаговары

3.      биовары

4.      хемовары

149.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      прокариоты

2.      порины

3.      простейшие

4.      прионы

150.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ХАРАКТЕРИЗУЮТ:

1.      Устойчивость во внешней среде

2.      Устойчивость к действию физических факторов

3.      Чувствительность к бактериофагам

4.      Отношение к определенному методу окрашивания

151.КАПСУЛЬНЫЕ МИКРООРГАНИЗМЫ

1.      Klebsiella pneumoniae

2.      Treponema pallidum

3.      Bifidobacterium bifidum

4.      Candida albicans

152.КАПСУЛООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      Penicillium notatum

2.      Streptococcus pneumoniae

3.      Treponema pallidum

4.      Brucella melitensis

5.      Candida albicans

153.КАПСУЛУ ОБРАЗУЮТ:

1.      Plasmodium vivax

2.      Klebsiella pneumoniae

3.      Treponema pallidum

4.      Entamoeba coli

5.      Candida albicans

154.КАПСУЛУ ОБРАЗУЮТ:

1.      пневмококки

2.      вирус гриппа

3.      пневмоцисты

4.      вирус герпеса

155.КАПСУЛУ ОБРАЗУЮТ:

1.      Клебсиеллы

2.      Вирус натуральной оспы

3.      Пневмоцисты

4.      Пенициллы

156.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ

1.      Бациллы

2.      Мукор

3.      Кандиды

4.      Клостридии

5.      Аспергиллы

6.      Пенициллы

157.КАПСУЛУ ВЫЯВЛЯЮТ ПО МЕТОДУ

1.      Бурри-Гинса

2.      Циля-Нельсена

3.      Грама

4.      Фельгена

158.БАКТЕРИИ, ДИАМЕТР СПОР У КОТОРЫХ БОЛЬШЕ ТОЛЩИНЫ КЛЕТКИ:

1.      Бациллы

2.      Мукор

3.      Кандида

4.      Клостридии

5.      Стрептококки

159.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      . Не имеют ядра

2.      . Относятся к эукариотам

3.      . Относятся к прокариотам

4.      . Окрашиваются по Цилю-Нельсену

160.ФУНКЦИИ ЛПС:

1.      Антигенная

2.      Ферментативная

3.      Адгезивная

4.      Секреторная

161.ТАКСОНОМИЧЕСКАЯ КАТЕГОРИЯ, ОБЪЕДИНЯЮЩАЯ ВИДЫ МИКРООРГАНИЗМОВ С НАИБОЛЬШИМ КОЛИЧЕСТВОМ СХОДНЫХ ПРИЗНАКОВ И СВОЙСТВ

1.      Семейство

2.      Род

3.      Вид

4.      Штамм

5.      Серовар

162.ОРГАНЫ ДВИЖЕНИЯ У БАКТЕРИЙ

1.      Пили

2.      Псевдоподии

3.      Жгутики

4.      Трихомонады

163.ДЛЯ ОКРАСКИ СПОР У БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1.      Окраску по Нейссеру

2.      Окраску по Граму

3.      Окраску по Бурри-Гинсу

4.      Окраску по Ауеске

164.ФУНКЦИИ ЛПС:

1.    Токсическая

2.    Ферментативная

3.    Адгезивная

4.      Секреторная

165.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1. Имеют оформленное ядро

2. Размножаются спорами

3. Относятся к прокариотам

4.      Окрашиваются по Цилю-Нельсену

166.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      Имеют нуклеокапсид

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Окрашиваются по Романовскому-Гимзе

167.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      Могут образовывать цисты

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Окрашиваются метахроматически

168.ПРОСТЕЙШИЕ:

1.      Многоклеточные

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Могут иметь сложный цикл развития со сменой хозяев

169.ПРОСТЕЙШИЕ:

1.      Могут образовывать цисты

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Имеют 70 S рибосомы

170.ПРОСТЕЙШИЕ:

1.    Размножаются дизъюнктивным способом

2.    Размножаются спорами

3.    Относятся к прокариотам

4.    Имеют 80 S рибосомы

171.ПЛАЗМОДИИ МАЛЯРИИ:

1.      Размножаются дизъюнктивным способом

2.      Размножаются спорами

3.      Относятся к эукариотам

4.      Имеют 70 S рибосомы

172.ПЛАЗМОДИИ МАЛЯРИИ:

1.      Размножаются в организме комара

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Образуют цисты

173.ПЛАЗМОДИИ МАЛЯРИИ:

1.      Размножаются дизъюнктивным способом

2.      Обнаруживают в крови больного человека

3.      Относятся к прокариотам

4.      Образуют споры

174.ПЛАЗМОДИИ МАЛЯРИИ:

1.      Размножаются дизъюнктивным способом

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Имеют апикальный комплекс

175.ТОКСОПЛАЗМЫ:

1.      Размножаются дизъюнктивным способом

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Имеют апикальный комплекс

176.ТОКСОПЛАЗМЫ:

1.      Размножаются дизъюнктивным способом

2.      Размножаются спорами

3.      Относятся к эукариотам

4.      Имеют нуклеоид

177.ТОКСОПЛАЗМЫ:

1.      Размножаются в организме комара

2.      Размножаются спорами

3.      Относятся к прокариотам

4.      Передаются человеку от кошек

178.ДИЗЕНТЕРИЙНЫЕ АМЕБЫ:

1.      Вызывают шигеллез

2.      Неподвижны

3.      Образуют псевдоподии

4.      Имеют жгутики

179.ДИЗЕНТЕРИЙНЫЕ АМЕБЫ:

1.      Вызывают токсоплазмоз

2.      Передаются половым путем

3.      Образуют цисты

4.      Имеют реснички

180.ДИЗЕНТЕРИЙНЫЕ АМЕБЫ:

1.      Вызывают кишечный иерсиниоз

2.      Существуют в просветной и пристеночной формах

3.      Образуют споры

4.      Имеют реснички

181.ДИЗЕНТЕРИЙНЫЕ АМЕБЫ:

1.      Вызывают кишечный эшерихиоз

2.      Образуют цисты

3.      Относятся к прокариотам

4.      Размножаются в организме клещей

182.БАЛАНТИДИИ:

1.      Вызывают амебную дизентерию

2.      Образуют цисты

3.      Относятся к прокариотам

4.      Размножаются в организме клещей

183.БАЛАНТИДИИ:

1.      Вызывают амебную дизентерию

2.      Образуют псевдоподии

3.      Относятся к прокариотам

4.      Имеют реснички для передвижения

184.БАЛАНТИДИИ:

1.      Передаются половым путем

2.      Размножаются в организме комара

3.      Относятся к эукариотам

4.      Размножаются спорами

185.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Аспергиллы относятся к высшим грибам

2.      Аспергиллы относятся к дрожжевым грибам

3.      Аспергиллы относятся к эукариотам

4.      Аспергиллы размножаются спорами

186.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Аспергиллы относятся к высшим грибам

2.      Аспергиллы могут размножаться половым путем

3.      Аспергиллы относятся к прокариотам

4.      Аспергиллы размножаются спорами

187.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Аспергиллы относятся к высшим грибам

2.      Аспергиллы могут размножаться половым путем

3.      Аспергиллы относятся к актиномицетам

4.      Аспергиллы образуют гифы

188.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Аспергиллы имеют септированный мицелий

2.      Аспергиллы образуют конидии

3.      Аспергиллы относятся к низшим грибам

4.      Аспергиллы образуют спорангии

189.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Аспергиллы имеют воздушный мицелий

2.      Аспергиллы имеют субстратный мицелий

3.      Аспергиллы имеют несептированный мицелий

4.      Аспергиллы имеют оформленное ядро

190.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы относятся к высшим грибам

2.      Пенициллы относятся к дрожжевым грибам

3.      Пенициллы относятся к эукариотам

4.      Пенициллы размножаются спорами

191.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы относятся к высшим грибам

2.      Пенициллы могут размножаться половым путем

3.      Пенициллы относятся к прокариотам

4.      Пенициллы размножаются спорами

192.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы относятся к высшим грибам

2.      Пенициллы могут размножаться половым путем

3.      Пенициллы относятся к актиномицетам

4.      Пенициллы образуют гифы

193.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы имеют септированный мицелий

2.      Пенициллы образуют конидии

3.      Пенициллы относятся к низшим грибам

4.      Пенициллы образуют гифы

194.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы имеют воздушный мицелий

2.      Пенициллы имеют субстратный мицелий

3.      Пенициллы имеют несептированный мицелий

4.      Пенициллы имеют оформленное ядро

195.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor относятся к высшим грибам

2.      Грибы рода Mucor образуюут псевдомицелий

3.      Грибы рода Mucor относятся к эукариотам

4.      Грибы рода Mucor размножаются спорами

196.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor относятся к аскомицетам

2.      Грибы рода Mucor могут размножаться половым путем

3.      Грибы рода Mucor относятся к эукариотам

4.      Грибы рода Mucor размножаются спорами

197.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor относятся к низсшим грибам

2.      Грибы рода Mucor могут размножаться половым путем

3.      Грибы рода Mucor относятся к актиномицетам

4.      Грибы рода Mucor образуют гифы

198.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor имеют несептированный мицелий

2.      Грибы рода Mucor образуют конидии

3.      Грибы рода Mucor относятся к низшим грибам

4.      Грибы рода Mucor образуют спорангии

199.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor имеют воздушный мицелий

2.      Грибы рода Mucor имеют субстратный мицелий

3.      Грибы рода Mucor имеют несептированный мицелий

4.      Грибы рода Mucor имеют псевдомицелий

200.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Грибы рода Mucor относятся к диморфным грибам

2.      Грибы рода Mucor относятся к низшим грибам

3.      Грибы рода Mucor относятся к эукариотам

4.      Грибы рода Mucor размножаются спорами

201.ГРИБЫ РОДА MUCOR:

1.      вызывают муковисцидоз

2.      вызывают мукоромикоз

3.      вызывают микоплазмоз

4.      вызывают гистоплазмоз

202.ПЕНИЦИЛЛЫ:

1.      вызывают пенициллиоз

2.      вызывают мукоромикоз

3.      вызывают микоплазмоз

4.      вызывают аспергиллез

203.АСПЕРГИЛЛЫ:

1.      вызывают аспергиллез

2.      вызывают мукоромикоз

3.      вызывают эрготизм

4.      вызывают микоплазмоз

204.АКТИНОМИЦЕТЫ:

1.      вызывают актиноплазмоз

2.      вызывают мукоромикоз

3.      вызывают микоплазмоз

4.      вызывают актиномикоз

205.КАНДИДЫ:

1.      вызывают кандидатоксикоз

2.      вызывают мукоромикоз

3.      вызывают микоплазмоз

4.      вызывают кандидамикоз

206.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Кандиды относятся к высшим грибам

2.      Кандиды образуют псевдомицелий

3.      Кандиды относятся к прокариотам

4.      Кандиды грамположительны

207.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Кандиды относятся к высшим грибам

2.      Кандиды могут размножаться почкованием

3.      Кандиды относятся к зигомицетам

4.      Кандиды образуют бластоспоры

208.КАНДИДЫ:

1.      имеют септированный мицелий

2.      образуют конидии

3.      относятся к высшим грибам

4.      образуют спорангии

209.КАНДИДЫ:

1.      имеют воздушный мицелий

2.      имеют субстратный мицелий

3.      имеют несептированный мицелий

4.      имеют псевдомицелий

210.КАНДИДЫ:

1.      образуют конидии

2.      образуют спорангии

3.      образуют хламидоспоры

4.      образуют зигоспоры

211.КАНДИДЫ:

1.      относятся к низшим грибам

2.      могут размножаться половым путем

3.      относятся к актиномицетам

4.      образуют гифы

212.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Кандиды относятся к высшим грибам

2.      Кандиды могут размножаться почкованием

3.      Кандиды образуют гладкие колонии на среде Сабуро

4.      Кандиды не окрашиваются по Граму

213.КАНДИДЫ:

1.      образуют элементарные тельца

2.      образуют гифы

3.      образуют хламидоспоры

4.      образуют ретикулярные тельца

214.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Пенициллы имеют воздушный мицелий

2.      Пенициллы имеют субстратный мицелий

3.      Пенициллы имеют септированный мицелий

4.      Пенициллы образуют гладкие колонии на среде Сабуро

215.МИКРОСКОПИЧЕСКИЕ ГРИБЫ:

1.      Содержат нуклеокапсид

2.      Являются прокариотами

3.      Содержат в клетках хлорофилл

4.      Содержат в клетках хитин

216.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Микроскопические грибы культивируют на среде Сабуро

2.      Микроскопические грибы являются прокариотами

3.      Микроскопические грибы содержат в клетках эргостерол

4.      Микроскопические грибы содержат в клетках хитин

217.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Дрожжевые грибы культивируют на среде Сабуро

2.      Дрожжевые грибы являются эукариотами

3.      Дрожжевые грибы содержат в клетках эргостерол

4.      Дрожжевые грибы имеют септированный мицелий

218.ВИРОИДЫ:

1.      Внеклеточная форма вирусов

2.      Инфекционные РНК растений

3.      Инфекционные белки человека

4.      Вирусы бактерий

219.ВИРОИДЫ:

1.      Внутриклеточная форма вирусов

2.      Инфекционные РНК растений

3.      Элементарные тельца хламидий

4.      Вирусы растений

220.ВИРОИДЫ:

1.      Разновидность вирусов человека

2.      Инфекционные РНК растений

3.      Элементарные тельца хламидий

4.      Ретикулярные тельца хламидий

221.ПРИОНЫ:

1.      Внеклеточная форма вирусов

2.      Инфекционные РНК растений

3.      Инфекционные белки человека

4.      Вирусы бактерий

222.ПРИОНЫ:

1.      Внеклеточная форма вирусов

2.      Инфекционные РНК растений

3.      Инфекционные белки животных

4.      Вирусы растений

223.ПРИОНЫ:

1.      Нуклеокапсиды вирусов

2.      Инфекционные РНК растений

3.      Инфекционные белки человека

4.      Белки в наружной мембране клеточной стенки грамотрицательных бактерий

224.ПРИОНЫ:

1.      Разновидность прокариотов

2.      Белки клеточной стенки грамположительных бактерий

3.      Инфекционные белки человека

4.      Белки клеточной стенки грамотрицательных бактерий

225.ПРИОНЫ:

1.      Инфекционные белки бактерий

2.      Инфекционные белки животных

3.      Инфекционные белки вирусов

4.      Инфекционные РНК растений

226.ЛЕЙШМАНИИ:

1.      Относятся к простейшим

2.      Относятся к грибам

3.      Относятся к прокариотам

4.      Относятся к неклеточным микробам

227.ЛЕЙШМАНИИ:

1.      Имеют оформленное ядро

2.      Образуют споры

3.      Передвигаются с помощью псевдоподий

4.      Передвигаются с помощью ресничек

228.ЛЕЙШМАНИИ:

1.      Передвигаются с помощью жгутиков

2.      Неподвижны

3.      Образуют псевдоподии

4.      Образуют элементарные и ретикулярные тельца

229.ВСЕ ПЕРЕЧИСЛЕННОЕ НИЖЕ ВЕРНО, КРОМЕ:

1.      Лейшмании относятся к эукариотам

2.      Лейшмании относятся к простейшим

3.      Лейшмании относятся к жгутиконосцам

4.      Лейшмании относятся споровикам

230.ТРИХОМОНАДЫ:

1.      Вызывают токсоплазмоз

2.      Передаются половым путем

3.      Образуют псевдоподии

4.      Имеют реснички

231.ТРИХОМОНАДЫ:

1.      Образуют реснички

2.      Неподвижны

3.      Образуют псевдоподии

4.      Имеют жгутики

232.ТРИХОМОНАДЫ:

1.      Передвигаются с помощью жгутиков

2.      Неподвижны

3.      Образуют псевдоподии

4.      Образуют элементарные и ретикулярные тельца

233.ТРИХОМОНАДЫ:

1.      Имеют два ядра

2.      Передаются водным путем

3.      Образуют псевдоподии

4.      Относятся к простейшим

234.ЛЯМБЛИИ:

1.      Вызывают кишечный иерсиниоз

2.      Передаются водным путем

3.      Образуют псевдоподии

4.      Имеют реснички

235.ЛЯМБЛИИ:

1.      Вызывают амебную дизентерию

2.      Неподвижны

3.      Образуют псевдоподии

4.      Имеют жгутики

236.ВИРИОН:

1.      Внеклеточная форма вируса

2.      Инфекционная РНК растений

3.      Вирус бактерий

4.      Вирус растений

237.ВИРИОН:

1.      Внутриклеточная форма вирусов

2.      Внеклеточная форма вируса

3.      Элементарное тельце хламидий

4.      Ретикулярное тельце хламидий

238.ВИРИОН:

1.      Внутриклеточная форма вируса

2.      Разновидность прокариотов

3.      Разновидность архебактерий

4.      Вирус без нуклеокапсида

239.КАПСИД ВИРУСА:

1.      Состоит из капсомеров

2.      Находится снаружи от суперкапсида

3.      Содержит хитин

4.      Содержит пептидогликан

240.НУКЛЕОКАПСИД ВИРУСА:

1.      Состоит из капсомеров

2.      Находится снаружи от суперкапсида

3.      Содержит хитин

4.      Содержит пептидогликан

241.КАПСИД ВИРУСА:

1.      Окружает РНК или ДНК

2.      Окружает суперкапсид

3.      Имеет гликопротеиновые шипы

4.      Содержит эргостерол

242.НУКЛЕОКАПСИД ВИРУСА:

1.      Содержит РНК или ДНК

2.      Находится снаружи от суперкапсида

3.      Имеет гликопротеиновые шипы

4.      Содержит пептидогликан

243.УСТОЙЧИВОСТЬ НЕСПОРООБРАЗУЮЩИХ БАКТЕРИЙ К КИСЛОТАМ, ЩЕЛОЧАМ И СПИРТАМ ОБУСЛОВЛЕНА ВЫСОКИМ СОДЕРЖАНИЕМ В КЛЕТОЧНОЙ СТЕНКЕ:

1. Пептидогликана

2. Соединений серы

3. Соединений азота

4. Восков и липидов

244.ПО МЕТОДУ ЦИЛЯ-НЕЛЬСЕНА В СИНИЙ ЦВЕТ ОКРАШИВАЮТСЯ:

1. Микобактерии туберкулеза

2. Кислотоустойчивые бактерии

3. Микоплазмы пневмонии

4. Некислотоустойчивые бактерии

245.К КИСЛОТОУСТОЙЧИВЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:

1. Стафилококки

2. Бациллы

3. Клостридии

4. Микобактерии

246.СЛИЗИСТЫЙ СЛОЙ РАЗЛИЧНОЙ ТОЛЩИНЫ, РАСПОЛАГАЮЩИЙСЯ СНАРУЖИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1. Внешняя оболочка

2. Клеточная стенка

3. Наружная мембрана

4. Капсула

247.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ЗАКЛЮЧАЮТСЯ В:

1. Устойчивости во внешней среде

2. Устойчивости к действию физических факторов

3. Чувствительности к бактериофагам.

4. Отношении к определенному методу окраски

248.БАКТЕРИИ БЕЗ КЛЕТОЧНОЙ СТЕНКИ:

1. Хламидии

2. Риккетсии

3. Лептоспиры

4. Микоплазмы

249.КАПСУЛУ БАКТЕРИЙ ОБНАРУЖИВАЮТ В ЧИСТОЙ КУЛЬТУРЕ, ИСПОЛЬЗУЯ ОКРАСКУ:

1. По Цилю – Нельсену

2. По Ауеске

3. По Граму

4. По Бурри – Гинсу

250.К КИСЛОТОУСТОЙЧИВЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:

1.      Микрококки

2.      Микоплазмы

3.      Актиномицеты

4. Микобактерии

251.ПРОКАРИОТЫ:

1 Грибы

2 Простейшие

3 Вирусы

4 Прионы

5 Бактерии

252.К КИСЛОТОУСТОЙЧИВЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:      

1 Микоплазмы

2 Вибрионы

3 Шигеллы

4 Микобактерии

5 Спирохеты

253.МЕТОДЫ ИЗУЧЕНИЯ СТРУКТУРНОЙ ОРГАНИЗАЦИИ ВИРУСОВ:

1 Световая микроскопия

2 Фазово-контрастная микроскопия

3 Темнопольная микроскопия

4 Электронная микроскопия

5 Люминисцентная микроскопия

254.БАКТЕРИИ, У КОТОРЫХ ЖГУТИКИ РАСПОЛОЖЕНЫ ПО ПЕРИМЕТРУ КЛЕТКИ:

1 Амфитрихи

2 Перитрихи

3 Спирохеты

4 Монотрихи

5 Лофотрихи

6 Лептотрихии

255.ТИНКТОРИАЛЬНЫЕ СВОЙСТВА БАКТЕРИЙ ХАРАКТЕРИЗУЮТ:

1 Устойчивость во внешней среде

2 Устойчивость к действию физических факторов

3 Чувствительность к бактериофагам

4 Отношение к определенному методу окрашивания

5 Биохимическую активность

6 Устойчивость к антибиотикам

256.ДРОЖЖЕПОДОБНЫЕ ГРИБЫ:

1 Актиномицеты

2 Мукор

3 Кандиды

4 Микобактерии

5 Аспергиллы

6 Микоплазмы

257.КОККИ, РАСПОЛАГАЮЩИЕСЯ В ВИДЕ ЦЕПОЧЕК:

1 Сарцины

2 Пневмококки

3 Нейссерии

4 Стрептобациллы

5 Стрептококки

6 Стафилококки

258.БАКТЕРИИ, ДИАМЕТР СПОР У КОТОРЫХ БОЛЬШЕ ТОЛЩИНЫ КЛЕТКИ:

1 Бациллы

2 Аспергиллы

3 Кандиды

4 Клостридии

5 Пенициллы

6 Стафилококки

7 Трепонемы

259.КИСЛОТОУСТОЙЧИВЫЕ БАКТЕРИИ:

1 Стафилококки

2 Стрептококки

3 Эшерихии

4 Микобактерии

5 Микоплазмы

6 Уреаплазмы

7 Микрококки

8 Актиномицеты

260.ФУНКЦИЯ ДВИЖЕНИЯ У БАКТЕРИЙ:

1 Пили

2 Жгутики

3 Псевдоподии

4 Порины

5 Включения

6 Споры

7 Мезосомы

8 Реснички

261.АДГЕЗИЯ БАКТЕРИЙ К ЭУКАРИОТИЧЕСКИМ КЛЕТКАМ:

1 Пили

2 Реснички

3 Псевдоподии

4 Порины

5 Включения

6 Споры

7 Прионы

262.ДЛЯ ОКРАСКИ СПОР У БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1 Окраску по Нейссеру

2 Окраску по Леффлеру

3 Окраску по Бурри-Гинсу

4 Окраску по Ауеске

5 Окраску по Здродовскому

263.ОРГАНЕЛЛЫ ДВИЖЕНИЯ У БАКТЕРИЙ:

1 Перитрихи

2 Пили

3 Трихомонады

4 Псевдоподии

5 Жгутики

6 Реснички

7 Лофотрихи

8 Псевдомонады

264.ЛИПОПОЛИСАХАРИД БАКТЕРИАЛЬНОЙ КЛЕТКИ РАСПОЛОЖЕН В:

1 Цитоплазматической мембране

2 Наружной мембране клеточной стенки грамположительных бактерий

3 Мезосоме

4 Наружной мембране клеточной стенки грамотрицательных бактерий

5 Цитоплазме

6 Нуклеокапсиде

265.ФУНКЦИИ ФИМБРИЙ (ПИЛЕЙ) У БАКТЕРИЙ:

1 Генетическая

2 Адгезивная

3 Двигательная

4 Информационная

5 Защитная

6 Репаративная

266.ДЛЯ ОБНАРУЖЕНИЯ КАПСУЛ У БАКТЕРИЙ В ЧИСТОЙ КУЛЬТУРЕ ИСПОЛЬЗУЮТ:

1 Окраску по Цилю-Нельсену

2 Окраску по Ауеске

3 Окраску по Граму

4 Окраску по Бурри-Гинсу

5 Окраску по Нейссеру

6 Окраску по Леффлеру

267.МЕТОДЫ ИЗУЧЕНИЯ СТРУКТУРНОЙ ОРГАНИЗАЦИИ ВИРУСОВ:

1 Световая микроскопия

2 Фазово-контрастная микроскопия

3 Темнопольная микроскопия

4 Электронная микроскопия

5 Люминесцентная микроскопия

6 Микроскорпия с помощью стереоскопической лупы

268.СФОРМИРОВАННАЯ ВИРУСНАЯ ЧАСТИЦА:

1 Прион

2 Порин

3 Вирион

4 Вироид

5 Провирус

6 Профаг

7 Эписома

269.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ РАЗМНОЖАЮТСЯ:

1 Дизъюнктивно

2 Митотически

3 Спорами

4 Фрагментами мицелия

5 Бинарным делением

6 Половым путем

7 Почкованием

270.МЕТОДЫ ИЗУЧЕНИЯ СТРУКТУРНОЙ ОРГАНИЗАЦИИ ВИРУСОВ:

1 Световая микроскопия

2 Фазово-контрастная микроскопия

3 Темнопольная микроскопия

4 Электронная микроскопия

5 Люминесцентная микроскопия

6 Микроскопия с помощью стереоскопической лупы

271.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      бациллы

2.      шигеллы

3.      клостридии

4.      клебсиеллы

272.ГРИБЫ РОДА MUCOR:

1.      вызывают муковисцидоз

2.      вызывают мукоромикоз

3.      вызывают микоплазмоз

4.      вызывают микотоксикоз

273.АСПЕРГИЛЛЫ:

1.      вызывают аспергиллез

2.      вызывают мукоромикоз

3.      вызывают микотоксикоз

4.      вызывают микоплазмоз

274.БАКТЕРИИ, В КЛЕТОЧНОЙ СТЕНКЕ КОТОРЫХ СОДЕРЖИТСЯ МНОГОСЛОЙНЫЙ ПЕПТИДОГЛИКАН:

1.      грамположительные

2.      грамотрицательные

3.      толстостенные

4.      некислотоустойчивые

275.МИКРООРГАНИЗМЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОЙ СТЕНКИ:

1.      хламидии

2.      L- формы

3.      микоплазмы

4.актиномицеты

276.БИОЛОГИЧЕСКАЯ РОЛЬ ПЛАЗМИД:

1.      внехромосомные факторы наследственности

2.      локомоторная функция

3.      инвазия бактерий

4.      детерминируют дополнительные свойства бактерий

5.      регуляция осмотического давления

277.НЕ ИМЕЮТ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      бактерии

2.      грибы

3.      прионы

4.      простейшие

5.      вирусы

278.ГРАМПОЛОЖИТЕЛЬНЫЕ ПАЛОЧКИ – ВОЗБУДИТЕЛИ:

1.      газовой гангрены

2.      туляремии

3.      сибирской язвы

4.      бруцеллеза

5.      скарлатины

279.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1.      аскомицеты

2.      актиномицеты

3.      бифидобактерии

4.      лактобактерии

280.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      имеют ядро

2.      относятся к эукариотам

3.      относятся к прокариотам

4.      окрашиваются по Романовскому-Гимзе

281.ОСОБЕННОСТИ ВИРУСОВ:

1. не имеют клеточного строения

2. содержат ДНК или РНК

3. облигатные внутриклеточные паразиты

4. дизъюнктивный способ репродукции

282.ОСНОВНЫЕ МОРФОЛОГИЧЕСКИЕ РАЗНОВИДНОСТИ БАКТЕРИЙ:

1.      Кокки

2.      Извитые

3.      Палочки

4.      Ветвящиеся и нитевидные

283.В СОСТАВ ПЕПТИДОГЛИКАНА ВХОДЯТ:

1.      Тейхоевые кислоты

2.      N-ацетилглюкозамин

3.      N-ацетилмурамовая кислота

4.      Липополисахарид (ЛПС)

5.      Пептидный мостик из аминокислот

284.НАРУЖНАЯ МЕМБРАНА ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ СОДЕРЖИТ:

1.      ЛПС

2.      Порины

3.      Липид А

4.      Пептидогликан

285.ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИ:

1.      Стафилококки

2.      Хламидии

3.      Стрептококки

4.      Эшерихии

286.ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИ:

1.      Стафилококки

2.      Микобактерии

3.      Стрептококки

4.      Клостридии

5.      Бациллы

287.ОБРАЗОВАНИЕ ЭНДОСПОР У БАКТЕРИЙ СТИМУЛИРУЮТ:

1.      Недостаток питательных веществ

2.      Изменение температуры окружающей среды

3.      Изменение кислотности окружающей среды

4.      Попадание в организм человека или животного

288.СЛОЖНЫЕ МЕТОДЫ ОКРАСКИ БАКТЕРИЙ:

1.      Окраска по Цилю-Нельсену

2.      Окраска по Нейссеру

3.      Окраска по Граму

4.      Окраска фуксином

5.      Окраска по Бурри-Гинсу

289.СЛОЖНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ МЕТОДЫ ОКРАСКИ БАКТЕРИЙ:

  1. Окраска по Цилю-Нельсену

2.      Окраска по Нейссеру

  1. Окраска по Граму

4.      Окраска метиленовым синим

5.      Окраска по Бурри-Гинсу

290.СВОЙСТВА СПИРОХЕТ:

1.      Извитая форма

2.      Подвижны

3.      Имеют периплазматические жгутики (фибриллы)

4.      Грамотрицательны

5.      Образуют споры

291.РИККЕТСИИ:

1.      Облигатные внутриклеточные паразиты

2.      Прокариоты

3.      Грамотрицательны

4.      Окрашиваются по методу Здродовского

5.      Грамположительны

292.ПРИЗНАКИ ГРИБОВ:

1.      Отсутствует хлорофилл

2.      Имеют жесткую клеточную стенку

3.      Содержат стеролы в клеточной стенке

4.      Эукариоты

5.      Основа клеточной стенки — пептидогликан

293.ПРИЗНАКИ ГРИБОВ:

1.      Имеют нуклеоид

2.      Имеют оформленное ядро

3.      Образуют цисты

4.      Имеют митохондрии

5.      Размножаются спорами

294.ПРИЗНАКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1.      В клеточной стенке есть тейхоевые кислоты

2.      Некоторые могут образовывать споры

3.      Основной компонент клеточной стенки — пептидогликан

4.      Отдельные представители кислотоустойчивы

5.      В состав клеточной стенки входит наружная мембрана

295.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1.      Нейссерии

2.      Эшерихии

3.      Вибрионы

4.      Стрептококки

5.      Бациллы

296.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1.    Нейссерии

2.    Трепонемы

3.    Микобактерии

4.    Вейллонеллы

5.    Энтерококки

297.ФУНКЦИИ ЛПС:

1.      Антигенная

2.      Ферментативная

3.      Токсическая

4.      Секреторная

298.СВОЙСТВА ХЛАМИДИЙ:

1.        Грамотрицательные

2.        Грамположительны

3.        Облигатные внутриклеточные паразиты

4.        Факультативные внутриклеточные паразиты

5.        Прокариоты

299.МИКРОБЫ, У КОТОРЫХ РИГИДНОСТЬ КЛЕТОЧНОЙ СТЕНКИ ОБУСЛОВЛИВАЕТ ПЕПТИДОГЛИКАН:

1.      Грамотрицательные бактерии

2.      Актиномицеты

3.      Грамположительные бактерии

4.      Грибы

300.ЗЕРНА ВОЛЮТИНА:

1.      Цитоплазматические включения

2.      Окрашиваются по Ауеске

3.      Окрашиваются по Нейссеру

4.      Отличаются метахромазией

5.      Содержат полифосфаты

301.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1.      Актиномицеты

2.      Спириллы

3.      Микобактерии

4.      Спирохеты

302.МЕТОДЫ ИЗУЧЕНИЯ ПОДВИЖНОСТИ СПИРОХЕТ:

1.      Окраска серебрением по Морозову

2.      Микроскопия в темном поле

3.      Электронная микроскопия

4.      Фазово-контрастная микроскопия

303.МИЦЕЛИЙ ГРИБОВ – ЭТО:

1.      Клетка, лишенная цитоплазматической мембраны

2.      Совокупность гиф

3.      Совокупность хламидоспор

4.      Многоядерная структура

304.СТРУКТУРНЫЕ ОСОБЕННОСТИ ПРОКАРИОТОВ:

1.      Константа седиментации рибосом 70S

2.      Имеется нуклеоид

3.      Отсутствует аппарат Гольджи

4.      Отсутствует ядерная мембрана

305.НУКЛЕОИД БАКТЕРИЙ:

1.    Содержит 2-3 ядрышка

2.    Нить ДНК замкнута в кольцо

3.    Связан с ЛПС

4.    Не имеет ядерной оболочки

306.ПРИЗНАКИ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ:

1.      Клеточная стенка состоит из внешней (наружной) мембраны и внутреннего ригидного пептидогликанового слоя

2.      Имеется периплазматическое пространство

3.      Имеется ЛПС и липопротеин в составе внешней мембраны

4.      Отсутствует пептидогликан

307.ЦИТОПЛАЗМАТИЧЕСКИЕ ВКЛЮЧЕНИЯ У БАКТЕРИЙ:

1.      Зерна гликогена

2.      Митохондрии

3.      Зерна волютина

4.      Рибосомы

308.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1.      Актиномицеты

2.      Спириллы

3.      Бифидобактерии

4.      Спирохеты

309.ПРОСТЕЙШИЕ:

1.      Имеют клеточное строение

2.      Относятся к эукариотам

3.      Относятся к прокариотам

4.      В основном обладают микроскопическими размерами

5.      Окрашиваются по Романовскому-Гимзе

310.ТРЕПОНЕМЫ:

1.      Имеют 10-14 мелких завитков

2.      Имеют форму кокков

3.      Относятся к спирохетам

4.      Грамположительны

5.      Неподвижны

311.ЭУКАРИОТЫ:

1.      Простейшие

2.      Эубактерии

3.      Грибы

4.      Прионы

312.КЛЕТОЧНУЮ СТЕНКУ ИМЕЮТ:

1.      Бактерии

2.      Простейшие

3.      Грибы

4.      Прионы

313.ФУНКЦИИ ФИМБРИЙ (ПИЛЕЙ) У БАКТЕРИЙ:

1.        Половое размножение

2.        Прикрепление к субстрату

3.        Двигательная

4.        Участие в обмене генетической информацией

314.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ С ТИПИЧНОЙ ПОЛНОЦЕННОЙ КЛЕТОЧНОЙ СТЕНКОЙ:

1.      Риккетсии

2.      Микоплазмы

3.      Хламидии

4.      L-формы

315.В СОСТАВ КЛЕТОЧНОЙ СТЕНКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ ВХОДИТ:

1.      пептидогликан

2.     липополисахарид

3.      волютин

4.      флагеллин

5.      тейхоевые кислоты

316.МОРФОЛОГИЧЕСКИЕ И ТИНКТОРИАЛЬНЫЕ СВОЙСТВА СТАФИЛОКОККОВ:

1.      круглая форма клетки

2.      грамположительны

3.      грамотрицательны

4.      располагаются в виде гроздьев винограда

5.      располагаются в виде цепочек

317.ФУНКЦИИ СПОР БАКТЕРИЙ:

1.      защита генетического материала от неблагоприятных воздействий окружающей среды

2.      защита генетического материала от неблагоприятных воздействий в организме человека

3.      размножение

4.      запас питательных веществ

5.      сохранение вида

318.УСЛОВИЯ, СПОСОБСТВУЮЩИЕ ОБРАЗОВАНИЮ СПОР:

1.      низкая температура

2.      снижение содержания в окружающей среде питательных веществ

3.      полноценное питание и влажность

4.      попадание в организм

5.      высушивание

319.СУБТЕРМИНАЛЬНОЕ РАСПОЛОЖЕНИЕ СПОР ХАРАКТЕРНО ДЛЯ ВОЗБУДИТЕЛЯ:

1.      сыпного тифа

2.      газовой анаэробной инфекции

3.      сибирской язвы

4.      ботулизма

5.      столбняка

320.МИКРООРГАНИЗМЫ, ИМЕЮЩИЕ ВКЛЮЧЕНИЯ В ВИДЕ ЗЁРЕН ВОЛЮТИНА:

1.      Candida albicans

2.      Staphylococcus aureus

3.      Corynebacterium diphtheriae

4.      Mycoplasma hominis

5.      Сhlamydophila pneumoniae

321.МИКРООРГАНИЗМЫ, ИМЕЮЩИЕ ВКЛЮЧЕНИЯ В ВИДЕ ЗЁРЕН ВОЛЮТИНА:

1.      Corynebacterium pseudodiphtherithicum

2.      Mycobacterium tuberculosis

3.      Corynebacterium diphtheriae

4.      Mycoplasma hominis

5.      Clostridium tetani

322.МИКРООРГАНИЗМЫ, ИМЕЮЩИЕ ИЗВИТУЮ ФОРМУ:

1.      Chlamydia trachomatis

2.      Corynebacterium diphtheriae

3.      Leptospira interrogans

4.      Mycoplasma pneumoniae

5.      Borrelia recurrentis

323.ОКРАСКА БАКТЕРИЙ ПО МЕТОДУ ГРАМА ПОЗВОЛЯЕТ ВЫЯВИТЬ:

1.      форму клетки

2.наличие жгутиков

3.наличие кислотоустойчивости у бактерии

4.особенности расположения включений

5.особенности строения клеточной стенки

324.БАКТЕРИИ В КЛЕТОЧНОЙ СТЕНКЕ КОТОРЫХ СОДЕРЖИТСЯ МНОГОСЛОЙНЫЙ ПЕПТИДОГЛИКАН:

1.      грамположительные

2.      грамотрицательные

3.      спорообразующие

4.      микоплазмы

325.К ЭУКАРИОТАМ ОТНОСЯТСЯ:

1.      аскомицеты

2.      клостридии

3.      плазмодии

4.      грибы рода Candida

326.БАКТЕРИИ В КЛЕТОЧНОЙ СТЕНКЕ КОТОРЫХ СОДЕРЖИТСЯ МНОГОСЛОЙНЫЙ ПЕПТИДОГЛИКАН:

1.      грамположительные

2.      микоплазмы

3.      кислотоустойчивые

4.      уреоплазмы

327.БАКТЕРИИ В КЛЕТОЧНОЙ СТЕНКЕ КОТОРЫХ СОДЕРЖИТСЯ МНОГОСЛОЙНЫЙ ПЕПТИДОГЛИКАН:

1.      грамположительные

2.      неспорообразующие грамотрицательные

3.      спорообразующие

4.      неспорообразующие грамположительные

328.ЛИПОПОЛИСАХАРИД БАКТЕРИЙ:

1.      входит в состав клеточной стенки грамотрицательных бактерий

2.      входит в состав клеточной стенки грамположительных бактерий

3.      эндотоксин

4.      экзотоксин

5.      О-антиген

329.ЛИПОПОЛИСАХАРИД ВХОДИТ В СОСТАВ КЛЕТОЧНОЙ СТЕНКИ:

1.      сальмонелл

2.      актиномицет

3.      клостридий

4.      нейссерий

5.      эшерихий

330.МИКРОСКОПИЧЕСКИЙ МЕТОД ИНФОРМАТИВЕН ПРИ ДИАГНОСТИКЕ:

1.      дизентерии

2.      коклюша

3.      туберкулеза

4.      бруцеллеза

5.      гонореи

6.      малярии

331.СПОРЫ ОБРАЗУЮТ ВОЗБУДИТЕЛИ:

1.      чумы

2.      туляремии

3.      бруцеллеза

4.      сибирской язвы

5.      столбняка

6.      скарлатины

332.В ОСНОВУ КЛАССИФИКАЦИИ БАКТЕРИЙ ПОЛОЖЕНО:

1.      строение клеточной стенки

2.      наличие цитоплазматической мембраны

3.      наличие жгутиков

4.      наличие эндоспор

5.      особенности строения генома

333.К СПИРОХЕТАМ ОТНОСЯТСЯ  

1.      лептоспиры

2.      вибрионы

3.      микоплазмы

4.      трепонемы

334.МИКРООРГАНИЗМЫ, ЧАСТИЧНО ИЛИ ПОЛНОСТЬЮ УТРАТИВШИЕ КЛЕТОЧНУЮ СТЕНКУ ПОД ДЕЙСТВИЕМ ФАКТОРОВ ВНЕШНЕЙ СРЕДЫ:

1.      прионы

2.      протопласты

3.      плазмодии

4.      хламидии

5.      сферопласты

6.      Л-формы

335.БАКТЕРИИ, ИМЕЮЩИЕ МНОГО ЖГУТИКОВ ВОКРУГ КЛЕТКИ:

1.      амфитрихи

2.      перитрихи

3.      спирохеты

4.      микоплазмы

5.      вибрионы

6.      эшерихии

336.ДИПЛОКОККИ:

1.      менингококки

2.      гонококки

3.      пневмококки

4.      стафилококки

337.ДЛЯ ОКРАСКИ СПОР БАКТЕРИЙ ИСПОЛЬЗУЮТ:

1.      Окраску по Нейссеру

2.      Окраску по Граму

3.      Окраску по Бурри-Гинсу

4.      Окраску по Ауеске

5.      Окраску по Цилю-Нельсену

338.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1.      Salmonella typhi

2.      Clostridium tetani

3.      Bordetella pertussis

4.      Clostridium botulinum

5.      Bacillus anthracis

339.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1.      актиномицеты

2.      спириллы

3.      боррелии

4.      спирохеты

340.ТРЕПОНЕМЫ:

1.      Имеют 10-12 мелких завитков

2.      Имеют форму кокков

3.      Грамположительны

4.      Подвижны

5.      Грамотрицательны

341.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      имеют ядро

2.      относятся к эукариотам

3.      относятся к прокариотам

4.      окрашиваются по Романовскому-Гимзе

342.ГРИБЫ:

1.      аскомицеты

2.      мукор

3.      кандида

4.      клостридии

5.      актиномицеты

6.      пеницилл

343.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1.      актиномицеты

2.      спириллы

3.      вибрионы

4.      спирохеты

5.      бифидобактерии

344.ДАЙТЕ ХАРАКТЕРИСТИКУ ПРОСТЕЙШИХ:

1.      имеют ядро

2.      относятся к эукариотам

3.      имеют митохондрии

4.      имеют 80S рибосомы

345.ФУНКЦИИ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1. Контакт с внешней средой

2. Участвует в обмене веществ

3. Защищает от действия внешних вредных факторов

4. Поддерживает постоянную форму

346.ПРИЗНАКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1. В клеточной стенке есть тейхоевые кислоты

2. Некоторые могут образовывать споры

3. В клеточной стенке есть липотейхоевые кислоты

4. Отдельные представители кислотоустойчивы

347.ФУНКЦИИ ПИЛЕЙ (ВОРСИНОК, ФИМБРИЙ):

1. Адгезия бактерий к субстрату

2. Участие в передаче генов

3. Служат рецептором для бактериофагов

4. Являются антигенами

348.НЕ ИМЕЮТ КЛЕТОЧНОЙ СТЕНКИ:

1. Цисты амеб

2. Протопласты бактерий

3. Трофозоиты плазмодиев

4. Сферопласты бактерий

349.РЕВЕРСИЯ КЛЕТОЧНОЙ СТЕНКИ ВОЗМОЖНА У:

1. Микоплазм

2. Протопластов

3. Трепонем

4. Сферопластов

350.БАКТЕРИИ МОГУТ ПРЕВРАЩАТЬСЯ В L-ФОРМЫ ПОД ДЕЙСТВИЕМ:

1. Плазмид вирулентности

2. Антибиотиков

3. Конвертирующего бактериофага

4. Лизоцима

351.РЕАГЕНТЫ ДЛЯ ОКРАСКИ ПО ГРАМУ

1. Тушь

3. Водный фуксин

2. Этанол

4. Раствор Люголя

352.РЕАГЕНТЫ ДЛЯ ОКРАСКИ ПО ЦИЛЮ-НЕЛЬСЕНУ

1. Этанол

2. Метиленовый синий

3. Генциан фиолетовый

4. Карболовый фуксин

353.КЛЕТОЧНОЕ СТРОЕНИЕ ИМЕЮТ:

1 Бактерии

2 Вирусы

3 Прионы

4 Простейшие

5 Грибы

354.КОМПОНЕНТЫ КЛЕТКИ МИКРОБОВ-ЭУКАРИОТОВ:

1 Рибосомы 80s

2 Рибосомы 70s

3 Мезосомы

4 Митохондрии

5 Ядро

6 Нуклеоид

355.ЛПС ВХОДИТ В СОСТАВ КЛЕТОЧНОЙ СТЕНКИ БАКТЕРИЙ:

1 Стафилококков

2 Нейссерий

3 Шигелл

4 Клостридий

5 Актиномицетов

356.СТРУКТУРА БАКТЕРИЙ, СОДЕРЖАЩАЯ ЛПС:

1 Нуклеоид

2 Цитоплазма

3 Цитоплазматическая мембрана

4 Клеточная стенка грамотрицательных бактерий

5 Капсула

357.ГРАМПОЛОЖИТЕЛЬНЫЕ КОККИ:

1 Стафилококки

2 Стрептококки

3 Пептострептококки

4 Гонококки

5 Энтерококки

358.КЛЕТОЧНЫЕ ФОРМЫ МИКРОБОВ:

1 Прокариоты

2 Вирусы

3 Эукариоты

4 Грибы

5 Прионы

359.ПРОКАРИОТЫ ИМЕЮТ:

1 Клеточное строение

2 Оформленное ядро

3 Рибосомы

4 Митохондрии

5 Нуклеоид

360.ФУНКЦИИ ЛПС:

1 Антигенная

2 Генетическая

3 Токсическая

4 Репродуктивная

5 Репаративная

361.КОМПОНЕНТЫ КЛЕТОЧНОЙ СТЕНКИ ГРАМОТРИЦАТЕЛЬНЫХ МИКРООРГАНИЗМОВ:

1 Пептидогликан

2 Тейхоевые кислоты

3 Липополисахарид

4 Наружная мембрана

5 Стеролы

362.ГРАМПОЛОЖИТЕЛЬНЫЕ КОККИ:

1 Стафилококки

2 Стрептококки

3 Энтерококки

4 Пептострептококки

5 Пневмококки

363.К ИЗВИТЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:

1 Микоплазмы

2 Боррелии

3 Актиномицеты

4 Трепонемы

5 Лептоспиры

364.ЭУКАРИОТЫ ИМЕЮТ:

1 Клеточное строение

2 Оформленное ядро

3 Рибосомы

4 Митохондрии

5 Нуклеоид

365.КОМПОНЕНТЫ БАКТЕРИАЛЬНОЙ (ПРОКАРИОТИЧЕСКОЙ) КЛЕТКИ:

1 Рибосомы 80s

2 Пептидогликан

3 ЦПМ

4 Митохондрии

5 Нуклеоид

366.ЛИПОПОЛИСАХАРИД КЛЕТОЧНОЙ СТЕНКИ:

1 Является эндотоксином

2 Является О-антигеном

3 Является колицином

4 Состоит из липида А, ядра ЛПС и О-специфической части

5 Содержится только у грамотрицательных бактерий

367.В СОСТАВЕ КЛЕТОЧНОЙ СТЕНКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ ИМЕЮТСЯ:

1 Пептидогликан

2 Стеролы

3 Липополисахарид

4 Тейхоевые кислоты

5 Наружная мембрана

368.АКТИНОМИЦЕТЫ – ЭТО:

1 Грибы

2 Извитые бактерии

3 Ветвящиеся бактерии

4 Простейшие

5 Гельминты

6 Прокариоты

369.ВИРУСЫ:

1 Не имеют клеточного строения

2 Содержат один тип нуклеиновой кислоты

3 Размножаются бинарным делением

4 Растут на сложных питательных средах

5 Имеют нуклеокапсид

370.КОККИ – ВОЗБУДИТЕЛИ:

1 Чумы

2 Эпидемического цереброспинального менингита

3 Сифилиса

4 Гонореи

5 Скарлатины

371.НЕКЛОСТРИДИАЛЬНЫЕ ОБЛИГАТНЫЕ АНАЭРОБЫ:

1 Стафилококки

2 Бактероиды

3 Пептококки

4 Нейссерии

5 Пептострептококки

372.СПОРООБРАЗУЮЩИЕ БАКТЕРИИ:

1 Salmonella typhi

2 Clostridium tetani

3 Bordetella pertussis

4 Bacillus anthracis

5 Vibrio cholerae

373.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Токсоплазмоз

2 Гонорея

3 Актиномикоз

4 Малярия

5 Амебиаз

6 Кандидоз

374.СПОРЫ ОБРАЗУЮТ ВОЗБУДИТЕЛИ:

1 Чумы

2 Хламидиоза

3 Сибирской язвы

4 Бруцеллеза

5 Столбняка

375.ГРАМОТРИЦАТЕЛЬНЫЕ ПАЛОЧКИ – ВОЗБУДИТЕЛИ:

1 Чумы

2 Холеры

3 Сибирской язвы

4 Дифтерии

5 Шигеллеза

376.НЕСПОРООБРАЗУЮЩИЕ ОБЛИГАТНЫЕ АНАЭРОБЫ:

1 Бактероиды

2 Фузобактерии

3 Пептококки

4 Клостридии

5 Вибрионы

377.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Трипаносомоз

2 Лейшманиоз

3 Трихомониаз

4 Лептоспироз

5 Кандидоз

378.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Сальмонеллез

2 Трихомониаз

3 Кандидоз

4 Малярия

5 Микоплазмоз

379.ПРОКАРИОТЫ ИМЕЮТ:

1 Клеточную стенку

2 Митохондрии

3 Нуклеоид

4 Рибосомы

5 Аппарат Гольджи

380.К ИЗВИТЫМ БАКТЕРИЯМ ОТНОСЯТСЯ:

1 Трепонемы

2 Бифидобактерии

3 Актиномицеты

4 Спириллы

5 Спирохеты

381.ЛИПОПОЛИСАХАРИД КЛЕТОЧНОЙ СТЕНКИ:

1 Является эндотоксином

2 Является О-антигеном

3 Является Н-антигеном

4 Является колицином

5 Имеется только у грамположительных бактерий         

382.ВИРУСЫ:

1 Не имеют клеточного строения

2 Содержат один тип нуклеиновой кислоты

3 Содержат пептидогликан

4 Имеют нуклеоид

5 Имеют нуклеокапсид

383.ЛПС ВХОДИТ В СОСТАВ КЛЕТОЧНОЙ СТЕНКИ:

1 Вибрионов

2 Клостридий

3 Нейссерий

4 Стафилококков

5 Актиномицет

384.ОКРАСКУ ПО ЦИЛЮ-НЕЛЬСЕНУ ПРИМЕНЯЮТ ДЛЯ ВЫЯВЛЕНИЯ:

1 Спирохет

2 Микобактерий туберкулеза

3 Стафилококков

4 Кислотоустойчивых бактерий

5 Клостридий

385. ПРОКАРИОТЫ ОТЛИЧАЮТСЯ:

1 Наличием митохондрий

2 Наличием пептидогликана

3 Наличием рибосом 70S

4 Наличием хитина

386.К ГРИБАМ ОТНОСЯТСЯ:

1 Микроспоридии

2 Аскомицеты

3 Дрожжи

4 Актиномицеты

5 Боррелии

387.ГРИБЫ РОДА CANDIDA:

1 Представители нормальной микрофлоры

2 Вызывают поражение слизистых оболочек

3 Относятся к гифальным грибам

4 Относятся к зигомицетам

388.ВОЗБУДИТЕЛЕЙ МАЛЯРИИ ДИФФЕРЕНЦИРУЮТ С УЧЕТОМ:

1 Количества мерозоитов в стадии деления паразита

2 Количества и форм трофозоитов

3 Особенностей эритроцитов

4 Формы гамонтов

389.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Сальмонеллез

2 Трихомониаз

3 Кандидоз

4 Малярия

5 Микоплазмоз

390.ГРАМПОЛОЖИТЕЛЬНЫЕ МИКРООРГАНИЗМЫ:

1 Клостридии

2 Сальмонеллы

3 Спирохеты

4 Лактобактерии

391.ОБРАЗОВАНИЕ ЭНДОСПОР У БАКТЕРИЙ СТИМУЛИРУЮТ:

1 Недостаток питательных веществ

2 Изменение температуры окружающей среды

3 Изменение кислотности окружающей среды

4 Попадание в организм человека

5 Изменение газового состава атмосферы

6 Попадание в организм животного

392.СВОЙСТВА СПИРОХЕТ:

1 Извитая форма клетки

2 Подвижны

3 Имеют периплазматические жгутики (фибриллы)

4 Грамотрицательны

5 Образуют споры

6 Перитрихи

7 Ветвящиеся бактерии

393.РИККЕТСИИ:

1 Облигатные внутриклеточные паразиты

2 Прокариоты

3 Грамотрицательны

4 Имеют один тип нуклеиновой кислоты

5 Относятся к вирусам

6 Не имеют клеточного строения

394.БАКТЕРИИ, У КОТОРЫХ ОТСУТСТВИЕ КЛЕТОЧНОЙ СТЕНКИ ВСЕГДА ДЕТЕРМИНИРОВАНО ГЕНЕТИЧЕСКИ:

1 Протопласты

2 Хламидии

3 Сферопласты

4 Микоплазмы

5 Риккетсии

6 Вироиды

7 Уреаплазмы

395.ПРИЗНАКИ ГРИБОВ:

1 Отсутствует хлорофилл

2 Могут образовывать мицелий

3 Содержат стеролы в цитоплазматической мембране

4 Прокариоты

5 Основа клеточной стенки — пептидогликан

6 Образуют споры

7 Имеют нуклеоид

396.БАКТЕРИИ БЕЗ КЛЕТОЧНОЙ СТЕНКИ:

1 Амфитрихи

2 Спирохеты

3 Микоплазмы

4 Хлоропласты

5 Л-формы

6 Протопласты

7 Сферопласты

397.БАКТЕРИИ БЕЗ КЛЕТОЧНОЙ СТЕНКИ

1.      Микоплазмы

2.      Хлоропласты

3.      L-формы

4.      Протопласты

5.      Сферопласты

398.БАКТЕРИИ БЕЗ КЛЕТОЧНОЙ СТЕНКИ:

1.      Микоплазмы

2.      L-формы

3.      Протопласты

4.      Сферопласты

399.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1 Прокариоты

2 Порины

3 Простейшие

4 Прионы

5 Вироиды

6 Вирусы

7 Микоплазмы

8 Бактериофаги

400.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Порины

2.      Прионы

3.      Вироиды

4.      Вирусы

5.      Бактериофаги

401.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Прокариоты

2.      Вирусы

3.      Эукариоты

4.      Прионы

402.МИКРОБЫ, НЕ ИМЕЮЩИЕ КЛЕТОЧНОГО СТРОЕНИЯ:

1.      Прокариоты

2.      Простейшие

3.      Прионы

4.      Микоплазмы

5.      Бактериофаги

403.ПРИЗНАКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1 В клеточной стенке имеются тейхоевые кислоты

2 Некоторые могут образовывать споры

3 Основной компонент клеточной стенки — пептидогликан

4 Отдельные представители кислотоустойчивы

5 В состав клеточой стенки входит наружная мембрана

6 Не содержат пептидогликан

404.ПРИЗНАКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1 В клеточной стенке имеются тейхоевые кислоты

2 Некоторые могут образовывать споры

3 Основной компонент клеточной стенки — пептидогликан

4 Отдельные представители кислотоустойчивы

405.ПРИЗНАКИ ГРАМПОЛОЖИТЕЛЬНЫХ БАКТЕРИЙ:

1 В клеточной стенке имеются тейхоевые кислоты

2 Некоторые могут образовывать споры

3 Основной компонент клеточной стенки — липополисахарид

4 Отдельные представители кислотоустойчивы

406.ПРИЗНАКИ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ:

1 В клеточной стенке имеются тейхоевые кислоты

2 В состав клеточой стенки входит наружная мембрана

3 Не содержат тейхоевые кислоты

4 Отдельные представители кислотоустойчивы

5 Не содержат пептидогликан

407.ПРИЗНАКИ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ:

1 В клеточной стенке имеются липотейхоевые кислоты

2 Содержат миколовые кислоты

3 Клеточная стенка имеет функцию эндотоксина

4 Клеточная стенка имеет функцию О-антигена

5 В состав клеточой стенки входит наружная мембрана

408.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1 Нейссерии

2 Эшерихии

3 Вибрионы

4 Стрептококки

5 Энтерококки

409.ФУНКЦИИ ЛПС:

1 Антигенная

2 Ферментативная

3 Токсическая

4 Секреторная

410.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1 Нейссерии

2 Эшерихии

3 Вибрионы

4 Хламидии

5 Риккетсии

6 Трепонемы

411.ФУНКЦИИ ЛПС:

1 Антигенная

2 Генетическая

3 Токсическая

4 Секреторная

5 Антимикробная

412.ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИ:

1 Бациллы

2 Пневмококки

3 Вибрионы

4 Стрептококки

5 Энтерококки

413.ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИ:

1 Нейссерии

2 Клостридии

3 Микобактерии

4 Кандиды

5 Микоплазмы

6 Боррелии

414.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1 Нейссерии

2 Эшерихии

3 Вибрионы

4 Стрептококки

5 Бациллы

6 Трепонемы

7 Клостридии

415.ФУНКЦИИ ЛПС:

1 Антигенная

2 Ферментативная

3 Токсическая

4 Секреторная

5 Генетическая

6 Мутагенная

7 Репаративная

416.УСТОЙЧИВОСТЬ МИКОБАКТЕРИЙ К КИСЛОТАМ, ЩЕЛОЧАМ И СПИРТАМ ОБУСЛОВЛЕНА ВЫСОКИМ СОДЕРЖАНИЕМ В КЛЕТОЧНОЙ СТЕНКЕ:

1 Пептидогликана

2 Тейхоевых кислот

3 Пептидных мостиков

4 Восков и липидов

5 Миколовых кислот

6 Дипиколината кальция

7 Волютина

417.СВОЙСТВА ХЛАМИДИЙ:

1 Грамотрицательные бактерии

2 Имеют извитую форму

3 Облигатные внутриклеточные паразиты

4 Не имеют клеточного строения

5 Эукариоты

6 Культивируются на простых питательных средах

418.МИКРОБЫ, У КОТОРЫХ В КЛЕТОЧНОЙ СТЕНКЕ СОДЕРЖИТСЯ ПЕПТИДОГЛИКАН:

1 Грамотрицательные бактерии

2 Актиномицеты

3 Грамположительные бактерии

4 Кандиды

5 Аспергиллы

6 Пенициллы

419.ЗЕРНА ВОЛЮТИНА:

1 Цитоплазматические включения

2 Окрашиваются по Ауеске

3 Окрашиваются по Нейссеру

4 Отличаются метахромазией

5 Содержат пептидогликан

6 Являются мезосомами

420.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1 Актиномицеты

2 Спириллы

3 Микобактерии

4 Микоплазмы

5 Трепонемы

6 Боррелии

7 Лептоспиры

8 Вибрионы

421.МЕТОДЫ ИЗУЧЕНИЯ ПОДВИЖНОСТИ ЖИВЫХ БАКТЕРИЙ:

1 Окраска по Граму

2 Микроскопия в тёмном поле

3 Электронная микроскопия

4 Окраска по Леффлеру

5 С помощью стереоскопической лупы

6 В нативном препарате «висячая капля»

422.СТРУКТУРНЫЕ ОСОБЕННОСТИ ПРОКАРИОТОВ:

1 Константа седиментации рибосом 70S

2 Имеется нуклеоид

3 Имеется аппарат Гольджи

4 Отсутствует ядерная мембрана

5 Имеется нуклеокапсид

6 Имеются митохондрии

7 Имеются мезосомы

423.НУКЛЕОИД БАКТЕРИЙ:

1 Содержит 2-3 ядрышка

2 Двунитевая ДНК замкнута в кольцо

3 Не имеет ядерной оболочки

4 Содержит пептидогликан

5 Содержит гистоны

6 Содержит рибосомы

7 Состоит из одной нити ДНК

424.ПРИЗНАКИ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ:

1 Клеточная стенка имеет наружную мембрану

2 Клеточная стенка содержит пептидогликан

3 Клеточная стенка содержит тейхоевые кислоты

4 Имеется периплазматическое пространство

5 Клеточная стенка содержит ЛПС

6 Клеточная стенка содержит мезосомы

425.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1 Актиномицеты

2 Спириллы

3 Бифидобактерии

4 Спирохеты

5 Вибрионы

6 Аспергиллы

426.ПРОСТЕЙШИЕ:

1 Имеют клеточное строение

2 Относятся к эукариотам

3 Образуют споры

4 Одноклеточные

5 Окрашиваются по Романовскому-Гимзе

6 Размножаются дизъюнктивно

427.ТРЕПОНЕМЫ:

1 Имеют 10-12 мелких завитков

2 Имеют форму кокков

3 Относятся к спирохетам

4 Грамотрицательны

5 Подвижны

6 Перитрихи

428.ЭУКАРИОТЫ:

1 Простейшие

2 Эубактерии

3 Грибы

4 Прионы

5 Эубиотики

6 Энтерококки

429.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1 Риккетсии

2 Микоплазмы

3 Хламидии

4 Нейссерии

5 Трепонемы

6 Пневмококки

430.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Токсоплазмоз

2 Гонорея

3 Актиномикоз

4 Кандидоз

5 Трихомониаз

6 Балантидиаз

7 Шигеллез

8 Амебиаз

9 Трихофития

431.СВОЙСТВА ХЛАМИДИЙ:

1 Грамположительные бактерии

2 Имеют сложный цикл развития

3 Облигатные внутриклеточные паразиты

4 Не имеют клеточного строения

5 Эукариоты

432.СВОЙСТВА ХЛАМИДИЙ:

1 Грамотрицательные бактерии

2 Имеют сложный цикл развития

3 Существуют в виде элеменарных телец

4 Существуют в виде ретикулярных телец

5 Прокариоты

433.СВОЙСТВА ХЛАМИДИЙ:

1 Грамположительные бактерии

2 Имеют сложный цикл развития

3 Существуют в виде элеменарных телец

4 Внутриклеточная форма называется вирион

5 Существуют в виде телец Пашена

434.СВОЙСТВА ХЛАМИДИЙ:

1 Грамотрицательные бактерии

2 Внутри клетки образует ретикулярные тельца

3 Внеклеточная форма – элементарные тельца

4 Внутриклеточная форма называется вирион

5 Относится к неклеточным формам жизни

435.МИКРОБЫ, У КОТОРЫХ В КЛЕТОЧНОЙ СТЕНКЕ СОДЕРЖИТСЯ ПЕПТИДОГЛИКАН:

1 Грамотрицательные бактерии

2 Актиномицеты

3 Грамположительные бактерии

4 Микобактерии

5 Микоплазмы

436.ЗЕРНА ВОЛЮТИНА:

1 Цитоплазматические включения

2 Окрашиваются по Ауеске

3 Окрашиваются по Нейссеру

4 Отличаются метахромазией

5 Содержат дипиколинат кальция

437.ЗЕРНА ВОЛЮТИНА:

1 Цитоплазматические включения

2 Защищают от фагоцитоза

3 Окрашиваются по Нейссеру

4 Отличаются метахромазией

5 Содержат полифосфаты

438.ЗЕРНА ВОЛЮТИНА:

1 Цитоплазматические включения

2 Защищают от фагоцитоза

3 Окрашиваются по Нейссеру

4 Придают бактериям кислотоустойчивость

5 Содержат полифосфаты

439.ЗЕРНА ВОЛЮТИНА:

1 Цитоплазматические включения

2 Обнаруживают у коринебактерий дифтерии

3 Окрашиваются по Нейссеру

4 Отличаются метахромазией

5 Содержат полифосфаты

440.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1 Актиномицеты

2 Спириллы

3 Трепонемы

4 Боррелии

5 Лептоспиры

6 Спирохеты

441.ИЗВИТЫЕ ФОРМЫ БАКТЕРИЙ:

1 Актиномицеты

2 Спириллы

3 Микобактерии

4 Микоплазмы

5 Спирохеты

442.МЕТОДЫ ИЗУЧЕНИЯ ПОДВИЖНОСТИ ЖИВЫХ БАКТЕРИЙ:

1 В нативном препарате «висячая капля»

2 Микроскопия в тёмном поле

3 Электронная микроскопия

4 В нативном препарате «раздавленная капля»

5. С помощью стереоскопической лупы

443.СТРУКТУРНЫЕ ОСОБЕННОСТИ ПРОКАРИОТОВ:

1 Константа седиментации рибосом 80S

2 Имеется нуклеоид

3 Имеются мезосомы

4 Отсутствует ядерная мембрана

5 Имеется нуклеокапсид

6 Имеются митохондрии

444.НУКЛЕОИД БАКТЕРИЙ:

1 Содержит 2-3 ядрышка

2 Двунитевая ДНК замкнута в кольцо

3 Не имеет ядерной оболочки

4 Содержит пептидогликан

5 Содержит гистоны

6. Имеет гаплоидный набор генов

445.ПРИЗНАКИ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ:

1 Клеточная стенка имеет наружную мембрану

2 Клеточная стенка содержит пептидогликан

3 Клеточная стенка содержит липотейхоевые кислоты

4 Имеется периплазматическое пространство

5 Клеточная стенка содержит ЛПС

6 Бактериальная клетка содержит нуклеокапсид

446.ВЕТВЯЩИЕСЯ БАКТЕРИИ:

1 Актиномицеты

2 Спириллы

3 Бифидобактерии

4 Стрептомицеты

5 Аспергиллы

447.ПРОСТЕЙШИЕ:

1 Имеют клеточное строение

2 Относятся к прокариотам

3 Могут образовывать цисты

4 Одноклеточные

5 Могут иметь сложный цикл развития

6 Размножаются дизъюнктивно

448.ПРОСТЕЙШИЕ:

1 Имеют клеточное строение

2 Относятся к эукариотам

3 Образуют споры в неблагоприятных условиях

4 Многоклеточные

5 Могут иметь сложный цикл развития

6 Размножаются дизъюнктивно

449.ТРЕПОНЕМЫ:

1 Имеют 3-8 крупных завитков

2 Имеют фибриллы

3 Относятся к спирохетам

4 Грамотрицательны

5 Подвижны

450.ЭУКАРИОТЫ:

1 Простейшие

2 Эубактерии

3 Грибы

4 Архебактерии

5 Эубиотики

451.ГРАМОТРИЦАТЕЛЬНЫЕ БАКТЕРИИ:

1 Риккетсии

2 Лептоспиры

3 Хламидии

4 Легионеллы

5 Трепонемы

6 Боррелии

452.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ВИРУСАМИ:

1 Ящур

2 Паротит

3 Полиомиелит

4 Клещевой энцефалит

5 Сибирская язва

6 Ветряная оспа

453.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ВИРУСАМИ:

1 Ящур

2 Мелиоидоз

3 Сап

4 Натуральная оспа

5 Сибирская язва

6 Чума

454.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ВИРУСАМИ:

1 Цитомегалия

2 Синдром ошпаренной кожи

3 Синдром хронической усталости

4 Бешенство (гидрофобия)

5 Гистоплазмоз

6 Туляремия

455.ГРИБЫ РАЗМНОЖАЮТСЯ:

1 Дизъюнктивно

2 Вегетативно

3 Спорами

4 Фрагментацией мицелия

5 Бинарным делением

6 Половым путём

7 Бесполым путём

456.СПИРОХЕТЫ:

1 Имеют форму запятой

2 Грамотрицательные бактерии

3 Подвижны

4 Имеют жгутики

5 Размножаются дизъюнктивно

6 Относятся к извитым бактериям

7 Плохо окрашиваются анилиновыми красителями

8 Амфитрихи

457.МИКОПЛАЗМЫ:

1 Грамотрицательные бактерии

2 Образуют споры

3 Относятся к Л-формам бактерий

4 Устойчивы к пенициллину

5 Лишены клеточной стенки

6 Вызывают микоплазмозы

7 Содержат стеролы в составе ЦПМ

8 Вызывают микобактериозы

9 Вызывают актиномикозы

458.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ГРИБАМИ:

1 Пенициллиоз

2 Аспергиллез

3 Стафилококкоз

4 Трихофития

5 Криптококкоз

6 Криптоспоридиоз

459.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Малярия

2 Лейшманиоз

3 Иерсиниоз

4 Лептоспироз

5 Трихомониаз

6 Балантидиаз

7 Сальмонеллёз

8 Легионеллёз

460.НЕКЛЕТОЧНЫЕ ФОРМЫ ЖИЗНИ:

1 Вирусы

2 Вироиды

3 Прионы

4 Порины

5 Бактериофаги

6 Эубактерии

7 Архебактерии

461.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ГРИБАМИ:

1 Токсоплазмоз

2 Гонорея

3 Актиномикоз

4 Лепра

5 Кандидоз

6 Мукороз

462.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ГРИБАМИ:

1 Микотоксикоз

2 Микобактериоз

3 Микоплазмоз

4 Актиномикоз

5 Афлатоксикоз

6 Микроспория

463.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ГРИБАМИ:

1 Микобактериоз

2 Дерматомикозы

3 Онихомикозы

4 Системные микозы

5 Поверхностные микозы

6 Микоплазмоз

464.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ГРИБАМИ:

1 Пенициллиоз

2 Аспергиллез

3 Стафилококкоз

4 Трихофития

5 Криптококкоз

6 Криптоспоридиоз

465.ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ПРОСТЕЙШИМИ:

1 Малярия

2 Лейшманиоз

3 Иерсиниоз

4 Лептоспироз

5 Трихомониаз

6 Балантидиаз

7 Сальмонеллёз

8 Легионеллёз

466.НЕКЛЕТОЧНЫЕ ФОРМЫ ЖИЗНИ:

1 Вирусы

2 Вироиды

3 Прионы

4 Порины

5 Бактериофаги

6 Эубактерии

7 Архебактерии

467.ГРИБЫ РАЗМНОЖАЮТСЯ:

1 Дизъюнктивно

2 Вегетативно

3 Спорами

4 Фрагментацией мицелия

5 Бинарным делением

6 Половым путём

7 Бесполым путём

468.СПИРОХЕТЫ:

1 Имеют форму запятой

2 Грамотрицательные бактерии

3 Подвижны

4 Имеют жгутики

5 Размножаются дизъюнктивно

6 Относятся к извитым бактериям

7 Плохо окрашиваются анилиновыми красителями

8 Амфитрихи

469.МИКОПЛАЗМЫ:

1 Грамотрицательные бактерии

2 Образуют споры

3 Относятся к Л-формам бактерий

4 Устойчивы к пенициллину

5 Лишены клеточной стенки

6 Вызывают микоплазмозы

7 Содержат стеролы в составе ЦПМ

8 Вызывают микобактериозы

9 Вызывают актиномикозы

470.МИКОБАКТЕРИИ:

1 Грамположительные бактерии

2 Образуют споры

3 Относятся к Л-формам бактерий

4 Устойчивы к кислотам и щелочам

5 Лишены клеточной стенки

6 Вызывают микоплазмозы

7 Вызывают туберкулез

8 Вызывают микобактериозы

9 Вызывают актиномикозы

 

Шесть королевств

Шесть королевств

Когда Линней разработал свой В системе классификации было всего два царства, растений и животных. Но польза микроскопа привели к открытию новых организмов и выявление различий в клетках. Система двух королевств была нет дольше полезно.

Сегодня система классификация включает шесть царств.

Шесть королевств:

Растения, животные, простейшие, грибы, архебактерии, Эубактерии .

Как организмы размещены в своих царствах?

Тип ячейки, сложный или простой

Их способность приготовить еду

Количество клеток в их теле

Растения

Вы, наверное, вполне знаком с членами этого королевства, поскольку он содержит все растения, которые вы узнали — цветущих растений, мхов, и папоротники.Все растения многоклеточные и состоят из сложных клетки.

Кроме растений автотрофов, организмов, которые сами производят пищу.

Насчитывает более 250 000 видов, царство растений — второе по величине царство.Виды растений варьируются от крошечных зеленые мхи до деревьев-гигантов.

Без растения, жизни на Земле не было бы! Растения питают почти всех гетеротрофов (организмов, питающихся другими организмов) на Земле. Ух ты!

Животные

животное королевство — самое большое королевство, насчитывающее более 1 миллион известных видов .

Суматранский тигр — Царство: Animalia, Тип, Chordata, класс Mammalia, отряд Carnivora, семейство Felidae, род Pathera, Виды tigris

Все животные состоят из множества сложные клетки. Это тоже гетеротрофов.

Представители животного мира встречаются в большинстве разнообразная среда в мире.

Архебактерии

В 1983 году инструмент ученых образцы из места в глубине Тихого океана где горячие газы и расплавленная порода вскипели в океане, образовав Землю интерьер. К их удивлению они в образцах обнаружены одноклеточные (одна клетка) организмов. Эти Организмы сегодня классифицируются в королевстве архебактерий.

Архебактерии встречается в экстремальных условиях, таких как горячая кипящая вода и термальная вода. вентилирует в условиях отсутствия кислорода или в сильно кислой среде.

Находка Архебактерии : The hot пружины из Йеллоустон Национальный парк , США , были в числе первых были обнаружены архебактерии. На фото биологи Выше показаны погружаемые предметные стекла микроскопа в бассейн с кипящей водой, на которые архебактерии могут быть пойманы для изучения.

Эубактерии

Подобно архебактериям, эубактерии являются сложными и одноклеточные. Большинство бактерий находится в EUBACTERIA Королевство. Это те виды, которые можно найти повсюду, и люди их больше всего знаком с.

Эубактерии классифицируются в их собственное царство, потому что их химический состав отличается.

Мост эубактерии полезны. Некоторые производят витамины и такие продукты, как йогурт. Однако эти эубактерии, стрептококки, изображенные выше, могут вызвать стрептококковое горло!

Грибы

Грибы, плесень и грибок все являются примерами организмов в королевстве грибов.

Большинство грибов многоклеточные и состоит из множества сложных клеток.

Интересные факты о Грибы

Некоторые грибы имеют прекрасный вкус, а другие могут убить вас!

Грибы — это организмы, которые когда-то путали биологи. с растениями, однако, в отличие от растений, грибы не могут самостоятельно готовить пищу. Большинство получают пищу из частей растений, которые разлагаются в почва.

Протисты

Слизневые плесени и водоросли протисты.

Иногда их называют царство случайностей и концов, потому что его члены так отличаются от одного Другой. Протисты включает все микроскопические организмы, которые являются , а не бактериями, не животных, не растений и не грибов.

Большинство протистов являются одноклеточными. Вы можете быть интересно, почему эти протисты не классифицируются как архебактерии или Царства эубактерий.

Потому что, в отличие от бактерии, протисты — сложные клетки.

Эти нежные на вид диатомовые водоросли классифицируются в протистское царство.

Список одноклеточных организмов | Sciencing

Клетка — это самый маленький живой организм, в котором есть все черты жизни, и почти вся жизнь на планете начинается как одноклеточный организм. В настоящее время существует два типа одноклеточных организмов: прокариот и эукариот , без отдельно определенного ядра и с ядром, защищенным клеточной мембраной.Ученые утверждают, что прокариоты — самая древняя форма жизни, впервые появившаяся около 3,8 миллиона лет назад, в то время как эукариоты появились около 2,7 миллиарда лет назад. Таксономия одноклеточных организмов попадает в одну из трех основных областей жизни: эукариоты, бактерии и археи.

TL; DR (слишком долго; не читал)

Биологи классифицируют все живые организмы на три области жизни, начиная с одноклеточных и заканчивая многоклеточными организмами: археи, бактерии и эукариоты.

Характеристики всех клеток

Все одноклеточные и многоклеточные организмы имеют следующие общие черты:

  1. Плазматическая мембрана, которая защищает и отделяет живую клетку от внешней среды, при этом позволяя молекулам течь по ее поверхности, в дополнение к специфическим свойствам. рецепторы внутри клетки, которые могут влиять на клеточные события.
  2. Внутренняя область, в которой находится ДНК.
  3. За исключением бактерий, все живые клетки содержат отделенные мембраной отсеки, частицы и нити, покрытые почти жидким веществом.

Первая классификация: три области жизни

До 1969 года биологи классифицировали клеточную жизнь на два царства: растения и животных. После 1969-1990 гг. Ученые согласовали систему классификации пяти царств, в которую входили монеры (бактерии), простейшие, растения, грибы и животные. Но доктор Карл Вёзе (1928-2012), бывший профессор кафедры микробиологии в Университете Иллинойса, в 1990 году предложил новую структуру классификации одноклеточных организмов и многоклеточных организмов, состоящую из трех областей: архей, бактерий и эукариоты, разделенные на шесть царств.Большинство ученых сейчас используют эту таксономию или систему классификации.

Археи: одноклеточные организмы, которые процветают в экстремальных условиях

Археи процветают в экстремальных условиях, ранее считавшихся неустойчивыми для жизни: глубоководные гидротермальные источники, горячие источники, Мертвое море, солевые пруды-испарители и кислотные озера. До предложения доктора Вёза ученые сначала идентифицировали архей как архебактерии — древние одноклеточные бактерии — потому что они выглядели как прокариотические бактерии, одноклеточные организмы, у которых отсутствует отдельное мембраносвязанное ядро ​​или органеллы.Дальнейшие исследования доктора Вёзе, его коллег и других ученых привели их к пониманию того, что эти древние бактерии были более тесно связаны с эукариотами из-за биохимических особенностей, которые они проявляют. Ученые и исследователи также обнаружили архей, обитающих в пищеварительном тракте и коже человека.

Область и царство архей

Археи имеют общие характеристики как прокариот, так и эукариот, поэтому они существуют на отдельной ветви между бактериями и эукариотами в филогенетическом древе жизни.Когда ученые обнаружили, что архебактерии на самом деле не были древними бактериями, они переименовали их в археи. Следующие особенности определяют одноклеточные организмы архей:

  • Они являются прокариотическими клетками, но генетически больше похожи на эукариот.
  • Клеточные мембраны состоят из разветвленных углеводородных цепей, в отличие от бактерий и эукарион, связанных с глицерином эфирными связями.
  • Стенки клеток архей не содержат пептидогликанов, полимеров, состоящих из сахаров и аминокислот, которые образуют перепончатый слой за пределами клеточных стенок большинства бактерий.
  • Хотя археи не реагируют на некоторые антибиотики, на которые реагируют бактерии, они действительно реагируют на некоторые антибиотики, вызывающие расстройство у эукариот.
  • Археи содержат рибосомную рибонуклеиновую кислоту (рРНК), специфичную для архей, необходимую для синтеза белка, идентифицируемую по молекулярным областям, заметно отличающимся от таковой рРНК, обнаруженной у бактерий и эукарий.

Основные классификации архей включают crenarchaeota , euryarchaeota и korarchaeota , а также предлагаемые подразделения наноархей и предлагаемые таумархеи . Индивидуальные классификации указывают типы сред, в которых исследователи и ученые находят эти одноклеточные организмы. Crenarchaeota живут в среде с экстремальной кислотностью и температурой и окисляют аммиак; К эвриархеям относятся организмы, которые окисляют метан и любят соль в глубоководной среде, другие эвриархеи, производящие метан в качестве отходов жизнедеятельности, и корархеи, категория архей, которые также живут в условиях высоких температур.

Наноархеи отличаются от других архей тем, что живут на другом архейском организме под названием Ignicoccus .Подтипы корархей и наноархей включают метаногенов , организмов, которые производят метан в качестве побочного продукта процессов пищеварения или выработки энергии; галофилов или сололюбивых архей; термофилов, организмов, которые процветают при экстремально высоких температурах; и психрофилов, организмов архей, живущих при очень низких температурах.

Бактерии: одноклеточные организмы, которые процветают в разных средах

Бактерии живут и процветают повсюду на планете: на вершинах гор, на дне самых глубоких океанов в мире, в пищеварительном тракте людей и животных и даже в замороженных скалы и лед Северного и Южного полюсов.Бактерии могут распространяться далеко и широко в течение многих лет, потому что они могут бездействовать в течение длительного времени.

Бактерии не содержат отдельного ядра

Бактерии существуют как ведущие живые существа на планете, находясь здесь по крайней мере на протяжении трех четвертей истории развития планеты. Они известны своей способностью адаптироваться к большинству мест обитания на планете. В то время как некоторые бактерии вызывают опасные заболевания у животных, растений и людей, большинство бактерий действуют как «полезные» агенты окружающей среды с метаболическими процессами, которые поддерживают высшие формы жизни.

Другие формы бактерий работают вместе с растениями и беспозвоночными (существами без позвоночника) в симбиотических отношениях, выполняя важные функции. Без этих одноклеточных организмов мертвые растения и животные разлагались бы дольше, а почва перестала бы быть плодородной. Исследователи и ученые используют некоторые бактерии в химических веществах, лекарствах, антибиотиках и даже при приготовлении таких продуктов, как квашеная капуста, йогурт, кефир и соленые огурцы. Как простые одноклеточные организмы, клетки бактерий имеют отличительные характеристики:

  • Как и археи, ученые определяют бактерии как прокариотические клетки без определенного или отдельного ядра.
  • Мембраны состоят из неразветвленных цепей жирных кислот, связанных с глицерином сложноэфирными связями, как у эукарии.
  • Клеточные стенки бактерий содержат пептидогликан.
  • Традиционные антибактериальные антибиотики действуют на бактерии, но они сопротивляются антибиотикам, действующим на эукарию.
  • Имеют рРНК, специфичную для бактерий, из-за наличия молекулярных областей, отличных от рРНК, обнаруженной у архей и эукарий.

Область и царство бактерий

Ученые классифицируют большинство бактерий на три группы в зависимости от того, как они реагируют на кислород в газовой форме. Аэробные бактерии процветают в кислородной среде и нуждаются в кислороде для жизни. Анаэробные бактерии не любят газообразный кислород; примером этих бактерий могут быть те, которые живут в отложениях глубоко под водой, или те, которые вызывают пищевое отравление на основе бактерий. Наконец, факультативных анаэробов — это бактерии, которые предпочитают присутствие кислорода в среде их выращивания, но могут жить без него.

Но исследователи также классифицируют бактерии по способу получения энергии: на гетеротрофов и автотрофов .Автотрофы, как растения, питаемые световой энергией (так называемые фотоавтотрофные), создают свой собственный источник пищи, фиксируя углекислый газ, или химиоавтотрофными способами, используя процессы окисления азота, серы или других элементов. Гетеротрофы получают свою энергию из окружающей среды, расщепляя органические соединения, такие как сапробные бактерии, живущие в разлагающемся веществе, а также бактерии, которые получают энергию за счет ферментации или дыхания.

Еще один способ группировки бактерий — по форме: сферическая, стержнеобразная и спиральная .Другие формы бактерий включают нитевидных, покрытых оболочкой, квадратных, стебельчатых, звездообразных, веретенообразных, лопастных, трихомообразующих (образующих волосы) и плеоморфных бактерий , способных изменять свою форму или размер в зависимости от среда.

Дальнейшие классификации включают микоплазм, болезнетворных бактерий, пораженных антибиотиками, поскольку у них отсутствует клеточная стенка; цианобактерии , фотоавтотрофные бактерии, такие как сине-зеленые водоросли; грамположительных бактерий , которые выделяют пурпурный цвет в тесте на окрашивание по Граму, потому что тест окрашивает их толстые клеточные стенки; и грамотрицательных бактерий , которые становятся розовыми в тесте на окрашивание по Граму из-за их тонких, но прочных внешних стенок.Грамположительные бактерии лучше реагируют на антибиотики, чем грамотрицательные бактерии, потому что, хотя стенка первых толстая, она проницаема, тогда как у грамотрицательных бактерий ее клеточные стенки тонкие, но действуют больше как пуленепробиваемый жилет.

Эукариоты процветают повсюду

Хотя эукариоты включают в себя множество многоклеточных организмов в царствах грибов, растений и животных, эта основная сфера жизни также включает одноклеточные организмы. Одноклеточные эукариоты имеют клеточные стенки, которые могут изменять свою форму по сравнению с прокариотами, которые имеют жесткие клеточные стенки.Большинство ученых полагают, что эукариоты произошли от прокариот, потому что оба используют РНК и ДНК в качестве генетического материала; они оба используют 20 аминокислот; и оба имеют липидную (растворимую в органических растворителях) двухслойную клеточную мембрану и используют D-сахара и L-аминокислоты. Специфические характеристики эукариот включают:

  • Эукариоты имеют отличительное отдельное ядро, защищенное мембраной.
  • Мембраны, как и у бактерий, состоят из неразветвленных цепей жирных кислот, связанных с глицерином сложноэфирными связями (что делает клеточные стенки более чувствительными к внешней среде по сравнению с архей).
  • Клеточные стенки у эукариот, у которых они есть, не содержат пептидогликан.
  • Антибактериальные антибиотики обычно не влияют на эукариотические клетки, но они реагируют или реагируют на антибиотики, которые обычно влияют на эукариотические клетки.
  • Эукариотические клетки имеют молекулярную область с рРНК, отличную от рРНК, которая существует у архей и бактерий.

Королевства под эукариотами

Эукариотическая область содержит четыре царства или подкатегории: протистов , грибов , растений и животных .Из них простейшие содержат только одноклеточные организмы, в то время как царство грибов содержит оба. Царство протистов включает в себя такие живые организмы, как водорослей, эвгленоидов, простейших и плесневых грибов . В царство грибов входят как одноклеточные, так и многоклеточные организмы. Одноклеточные организмы в царстве грибов включают дрожжей и хитридов или окаменелые грибы. Большинство организмов в царствах растений и животных многоклеточны.

Крупнейший одноклеточный организм

Хотя большинству одноклеточных организмов на планете обычно требуется микроскоп, вы можете наблюдать водную водоросль Caulerpa taxifolia невооруженным глазом. Эти водоросли-убийцы, определяемые как вид водорослей, произрастающих в Индийском океане и на Гавайях, являются инвазивным видом в других местах. Этот живой организм в царстве растений может вырасти от 6 до 12 дюймов в длину и имеет уплощенные, похожие на перья, ветви, исходящие от побега, от темного до светло-зеленого оттенка.

Самый маленький одноклеточный организм

На холмах над кампусом Калифорнийского университета в Беркли находится Национальная лаборатория Лоуренса Беркли, находящаяся под совместным управлением Министерства энергетики США и Калифорнийского университета. Международная группа ученых, возглавляемая исследователями лаборатории Беркли, в 2015 году обнаружила, возможно, самый маленький одноклеточный организм, запечатленный на изображении, полученном с помощью мощного микроскопа.

Этот одноклеточный организм, прокариотическая бактерия, настолько мал, что 150 000 этих одноклеточных бактерий могут сесть на кончик волоса с вашей головы.Исследователи продолжают изучать эти предполагаемые обычные организмы, поскольку им не хватает многих функций, необходимых для работы с другими организмами. Клетки, по-видимому, имеют ДНК, небольшое количество рибосом и нитевидных придатков, но более чем вероятно, что они живут за счет других бактерий.

Одноклеточный эукариот, нарушающий правила

Ученые из Карлова университета в Праге обнаружили единственный известный эукариотический организм, который не содержит специфических митохондрий, и нашли его в кишечнике домашней шиншиллы.Митохондрии, являясь двигателем клетки, делают несколько вещей. В присутствии кислорода митохондрии могут заряжать молекулы и производить важные белки. Но этот организм, родственник лямблий, использует систему, подобную той, которая обычно встречается у бактерий, — латеральный перенос генов — для синтеза белков. Поскольку бактерии существуют в основном как прокариотические клетки, обнаружение связанной с бактериями эукариотической клетки является исключением из правил.

Биология жизни в почве | Почвы 4 Учителя

Почва полна жизни.Часто говорят, что в горстке почвы живых организмов больше, чем людей на планете Земля. Почва — это желудок земли, он потребляет, переваривает и циркулирует питательные вещества и организмы.

Однако на первый взгляд почва может показаться довольно инертным материалом, по которому мы ходим, строим дороги, строим здания и выращиваем растения. При ближайшем рассмотрении мы видим, что почва изобилует живыми организмами. Живые организмы, присутствующие в почве, включают архей, бактерий, актиномицетов, грибов, водорослей, простейших и широкий спектр более крупных почвенных животных, включая коллембол, клещей, нематод, дождевых червей, муравьев и насекомых, которые проводят всю или часть своей жизни под землей, даже более крупные организмы, такие как роющие грызуны.Связь между почвенными организмами и тем, как они влияют на химические и физические свойства почвы, сложна. Все это важно для создания среды, которую мы называем почвой, и для осуществления многочисленных преобразований, жизненно важных для жизни.

Потребители и разлагатели микробов


Существуют тысячи различных видов бактерий, которые могут как помогать людям, так и вредить им.

Только 5% того, что производится зелеными растениями, потребляется животными, но 95% потребляется микроорганизмами.Один грамм плодородной почвы может содержать до миллиард бактерий. Существует много разных типов бактерий, и большинство из них еще даже не обнаружено! Большинство этих бактерий являются аэробными, что означает, что им требуется кислород из почвенной атмосферы. Однако другим бактериям необходимо жить без кислорода, а другие виды могут жить как с кислородом, так и без него. Рост этих бактерий ограничен пищей, содержащейся в почве.

Почвенные грибы также являются крупными компонентами почвы, которые бывают разных размеров, форм и цветов.У грибов есть подземные корни (мицелий), которые поглощают питательные вещества и воду, пока они не будут готовы к цветению в форме грибов. Они переносят кислотность, что делает их очень важными для разложения материалов в очень кислых лесах, чего не могут сделать микробы, они также могут разлагать лигнин, древесную ткань для разложения растений.

Почвенные животные

Почвенные животные являются потребителями и разложителями, поскольку они питаются органическими веществами, а разложение происходит в пищеварительном тракте.Некоторые животные питаются корнями, а другие питаются друг другом. Есть несколько видов червей. Дождевых червей идентифицировать проще всего. Они поедают растительный материал и органические вещества и выделяют в почву отложения червей в качестве пищи для других организмов. Они также оставляют каналы, в которых зарываются, что увеличивает проникновение. Дождевые черви могут весить от 100 до 1000 фунтов на акр! Существуют также микроскопические черви, называемые нематодами или круглыми червями. Эти черви живут в воде вокруг частиц почвы. Существует несколько различных типов нематод: одни поедают мертвые вещества, другие — живые корни, а третьи — другие живые организмы.Некоторые нематоды вредны и могут вызвать серьезное повреждение или деформацию корней.

Кроме червей, еще одно большое тело насекомых — это членистоногие, у которых есть экзоскелеты и суставные ноги. К ним относятся клещи, многоножки, многоножки, коллемболы и личинки.

Цикл углерода и питательных веществ

Круговорот питательных веществ — это обмен питательными веществами между живыми и неживыми частями экосистемы. Биологи почвы измеряют, как растения и микробы поглощают питательные вещества и включают их в органическое вещество, которое является основой углеродного цикла.Есть два основных процесса. Иммобилизация — это когда почвенные организмы поглощают минеральные питательные вещества из почвы и превращают их в микробные и растительные ткани. Обратный процесс — это минерализация , что происходит, когда организмы умирают и высвобождают питательные вещества из своих тканей. Этот процесс быстро меняется и очень важен для обеспечения растений питательными веществами. Углеродный цикл и азотный цикл очень важны для почвенных микробиологов.

Взаимодействие почвенных микробов и организмов

Корни растений просачивают в почву много органических веществ из мертвых материалов. Они обеспечивают питанием микроорганизмы и создают зоны активности вокруг корня, называемые ризосферой . В этой зоне могут произойти рост растений или токсичные вещества, но большинство из этих организмов являются полезными.


Эта фотография представляет собой увеличенное изображение взаимодействия грибков и корней

Другие ученые изучают болезни растений и животных, обнаруженные в почве.Бактерии и грибки могут вызывать увядание или гниение растений. Великий картофельный голод в Ирландии в 1845 году был вызван грибком, который вызвал бактериальный ожог картофеля! Эти организмы поражают не только растения. Люди могут заболеть, если в наших отходах присутствуют определенные типы бактерий, такие как E-Coli, и эти отходы не обрабатываются должным образом.

Некоторые грибы «заражают» корни растений, но взаимосвязь носит симбиотический характер, что означает, что они полезны как для растения, так и для корня. Они называются микориза , и они помогают растениям поглощать больше воды и питательных веществ, повышают устойчивость к засухе и уменьшают заражение болезнями.

Еще одна симбиотическая связь связана с азотом. В атмосфере много азота, но растениям его нелегко получить. Есть определенные виды бактерий, которые поглощают газообразный азот из атмосферы и образуют узелки. Это азотфиксирующие бактерии . Когда они умирают, азот, который они использовали, высвобождается для растений.

Одноклеточные организмы — обсуждение бактерий, простейших, грибов, водорослей и архей

Обсуждение бактерий, простейших, грибов, водорослей и архей


Что такое одноклеточный организм?

По сути, одноклеточные организмы живые организмы, существующие в виде отдельных клеток.29 одноклеточных организмов (около 20 000 видов).

Вот, это Стоит отметить, что эта цифра отражает только количество одноклеточных организмов в океане, а не на суше, что, другими словами, означает, что общее количество намного выше.

Хотя на Земле существует огромное количество, они делятся на следующие группы:

  • Бактерии
  • Простейшие
  • Грибы (одноклеточные)
  • Водоросли (одноклеточные)
  • Археи

Несмотря на их разнообразие , у них есть ряд основных характеристик.

Они живы и разделяют ряд характеристика для всех живых существ, таких как:

Организация — одноклеточные организмы обладают различными структурами, которые позволяют им выжить. Эти структуры содержатся внутри клетки (в цитоплазме) и включают такие структуры, такие как эндоплазматический ретикулум и генетический материал среди других.

Рост — Учитывая, что они живые существа, одноклеточные организмы увеличиваются в размерах.

Размножение — одноклеточные организмы также воспроизводятся, что позволяет им образовывать другие организмы, похожие на сами себя. Генетический материал, которым обладают эти микроорганизмы, делит позволяя каждой из дочерних клеток получить точную копию генетического материал, который содержался в исходной ячейке.

Ответ на внешний окружающая среда — Одноклеточные организмы также реагируют на различные условия, такие как как изменение температуры, света, так и прикосновения.Это способность отвечать к изменениям окружающей среды, которые позволяют одноклеточным организмам найти пищу и продолжить выживание.

* Учитывая, что одноклеточные (одноклеточные) организмы обладают характеристиками живых существ, мы не можем включите сюда вирусы. Это связано с тем, что вирусы не считаются живые существа, несмотря на то, что у них есть генетический материал и различные характеристики живых организмов.

Есть ряд характеристик, которые отличать вирусы от других одноклеточных организмов, к ним относятся:

  • Вирусы не растут / увеличиваются в размерах после формирования
  • Вирусы не усваивают энергия, как и у других одноклеточных организмов.
  • Они зависят от хоста клетки для воспроизводства (они не могут воспроизводиться самостоятельно).

Узнайте больше о вирусах под микроскопом, также ответив на вопрос: что такое вирусы?


Бактерии

Бактерии (одиночные бактерии) являются одними из самые многочисленные одноклеточные организмы в мире. В соответствии с Национальной академии наук, одно человеческое тело насчитывает 100 триллион отдельных бактериальных клеток.

Это прокариотические клетки, что означает что это простые одноклеточные организмы без ядра и мембраносвязанные органеллы (имеют небольшие рибосомы).

Для большинства бактерий (прокариотических клеток) ДНК содержится в нуклеоиде в виде большая петля кольцевой хромосомы. У разных видов бактерий такие структуры, такие как жгутик, пили, биопленка, клеточная стенка и капсула среди другие.

Хотя большое количество бактерий могут вызывать и вызывают как у человека, так и у человека болезни животных, очень важны некоторые бактерии. Например, тогда как такие бактерии, как актиномицеты, используются для производства антибиотиков, которые ценны при лечении определенных заболеваний, другие, такие как Lactobacillus bulgaricus и Streptococcus thermophilus используются в йогуртах.

Были показаны и другие виды бактерий. быть выгодным в таких отраслях, как сельское хозяйство и пищевая промышленность.

Существуют разные типы бактерий в зависимости от формы, питания, потребности в газе, а также клеточной стенки.


Форма

Существует три типа бактерий на основе форма.

Различные формы включают:

Бактерии сферической формы (кокк)

Кокковые бактерии имеют сферическую форму (или яйцевидный).Хотя они могут встречаться в виде отдельных клеток, кокковые бактерии также могут оставаться привязанным к другим.

Есть разные типы прикрепленных бактерий в том числе:

Бактерии диплококки — Диплококки встречаются в пар (две) и включает такие бактерии, как Nisseria gonorrhoeae

Streptococci бактерии — Streptococci бактерии происходят в виде цепочек с несколькими бактериями, прикрепленными друг к другу в цепочка подобным образом.Хороший пример бактерий стрептококков включает виды Streptococcus canis и Streptococcus bovis.

Бактерии стафилококка — Бактерии этого типа происходит в кластере. Примером стафилококковых бактерий является стафилококк. aureus. Некоторые из бактерий, которые существуют в кластерах, существуют только в кластерах четыре и известны как тетрады (например, вид Micrococcus).

Спириллы (spirillum )

Спириллы — грамотрицательные бактерии, которые склонны к иметь форму спирали.Они принадлежат к семейству Spirillaceae и включают виды Spirillum winogradskyi и Spirillum volutans.

Vibrio

В то время как спириллы имеют форму спирали, вибрион такие бактерии, как холерный вибрион, имеют форму запятой.


Классификация по питанию

Бактерии также сгруппированы по питанию.

По сути, есть две широкие категории, которые включают:


автотрофные бактерии

Автотрофные бактерии — это тип бактерий, которые могут синтезируют свою пищу из неорганических веществ (веществ, не содержащих углерод).Для этого типа бактерий углекислый газ используется для получения углерода.

Существует два основных типа автотрофных бактерий.

Фотоавтотрофы — Фотоавтотрофы бактерии — это тип бактерий, которые имеют фотосинтетический пигмент (пурпурный пигмент, зеленый пигмент и т. д.). Эти пигменты используются для синтеза пищи. (углевод) в присутствии солнечного света посредством процесса, известного как фотосинтез.

Примеры фотоавтотрофных бактерий:

Подробнее об Autotrophs

Хемосинтетические бактерии — В отличие от фотоавтотрофных бактерии, хемосинтезирующие бактерии могут синтезировать пищу из неорганических химикаты при отсутствии солнечного света.Таким образом, они не требуют световой энергии. синтезировать пищу.

Хемосинтетические бактерии также делятся на:

  • Нитрифицирующие бактерии, такие как Nitrosomonas, которые получают энергию за счет окисления аммиака

  • Бактерии сульфомонады, такие как Тиобациллы, которые получают энергию за счет окисления сероводорода

  • Ferrromonas бактерии или железобактерии, такие как лептотрикс. Эти бактерии получают энергию от окисления. соединений железа.

  • Бактерии Hydromonas — Для Hydromonas, такие как Bacillus pantotrouphs, энергия получается за счет преобразования водорода в воде


Гетеротрофные бактерии

Гетеротрофные бактерии — это тип бактерий. которые получают энергию из органических соединений. Это означает, что они не могут сами готовят себе еду и, таким образом, используют готовые продукты в качестве источника энергии.

Гетеротрофные бактерии также делятся на:

Сапрофитные бактерии — включая бактерии как Acetobacter, которые получают энергию из мертвых и разлагающихся органических веществ люблю листья, мясо и перегной.Эти бактерии способны выделять ферменты, которые используются для брожения или разложения при пищеварении.

Паразитические бактерии — Bacillus anthracis и Vibrio cholerae — примеры бактерий-паразитов. Таким образом, они получают энергию из тканей живых существ. В то время как некоторые из них могут быть безвредными, некоторые из них бактерии могут вызвать у хозяина серьезные заболевания.

Симбиотические бактерии — Симбиотические бактерии, подобные Bacillus azotobacter и Rhizobium способны установить симбиотический отношения с хозяином.Таким образом, они полезны для хозяина и не причинить вред.

Подробнее о гетеротрофах


Бактерии в зависимости от потребности в газах

Бактерии также классифицируются по газообразные потребности. В то время как некоторым бактериям для выживания нужен кислород, другим — нет. нет.

Аэробы — Аэробы (аэробные бактерии) — это тип бактерий, которые могут живут и размножаются только в присутствии кислорода. Есть две группы аэробы, к которым относятся облигатные аэробы и микроаэрофилы.

Для облигатные микробы, такие как микобактерии, высокая концентрация кислорода (как в комнатных воздух) требуется для жизни. Однако такие микроаэрофилы, как Campylobacter, только для выживания требуется более низкая концентрация кислорода (около 5 процентов кислорода).

Анаэробы — В отличие от аэробов, анаэробы относятся к типу бактерий, которые не нужен кислород для выживания. Анаэробы включают облигатные анаэробы, такие как Clostridium. которые не могут жить и размножаться в присутствии кислорода и факультативных анаэробы, такие как бактерии Staphylococci, которые могут выжить в присутствии или отсутствие кислорода.


Классификация бактерий на основе содержимого клеточной стенки

Метод окрашивания по Граму также используется для классификации бактерии. В то время как клеточная стенка некоторых бактерий содержит тонкий слой полимер, известный как пептидогликан (грамотрицательные бактерии) между внутренними и внешняя липидная мембрана, другие имеют более толстый слой полимера в дополнение липотейхоевой кислоте (грамположительные бактерии).

Из-за мыслительного полимера в их клеточная стенка, грамположительные сохраняют кристаллический фиолетовый краситель окраски по Граму и кажутся фиолетовыми под микроскопом.Однако у грамотрицательных бактерий есть более тонким слоем и поэтому не могут сохранять цвет. В результате они окрасьте в розовый / красный цвет, взяв краситель Сафранин.

грамположительные бактерии

  • Bacillus
  • Streptococcus
  • Nocardia
  • Lactobacillus и т. Д.

Грамположительные бактерии

745 и грамотрицательные бактерии



Простейшие

В отличие от бактерий, простейшие эукариотические одноклеточные организмы.Большинство простейших живут свободно (они могут существовать сами по себе). в то время как другие заражают высших животных и могут вызывать болезни.

Быть эукариотом клетки простейшие отображают черты, общие для других клеток животных. Этот связано с тем, что они обладают ядром и рядом других важных органеллы внутри клеточной мембраны. Учитывая, что существуют разные типы простейшие, классификация во многом основана на способах передвижения.

К ним относятся:

Sarcodina

Тип Sarcodina — самый крупный тип простейших. и содержит около 11 500 видов простейших.Амеба протей и Entamoeba histolytica, принадлежащие к этому типу, перемещаются через потоки эктоплазма.

Кроме того, одноклеточные организмы, принадлежащие к типу Sarcodina также используют временные псевдоподии, которые являются проекциями протоплазмы. обычно называемые ложными ногами.

Мастигофора

Мастигофора также относится к типу простейших и включает такие, как Giardia lamblia и Trichomonas vaginalis. Хотя некоторые имеют временные псевдоподии, большинство мастигофор — жгутиковые, которые означает, что во время движения они приводятся в движение хлыстовой конструкцией.

Эти жгутиконосцы могут иметь один или несколько жгутиков, делающих возможным движение. Некоторые в тип Mastigophora — свободноживущие организмы (Cercomonas longicauda и т. д.) в то время как другие существуют как паразиты (например, Trypanosoma gambiense).

Ciliophora

В отличие от Phylum Mastigophora, одноклеточные организмы в Phylum Ciliophora обладают ресничками, которые представляют собой короткие волоскоподобные выступы, которые продвигают их и обеспечивают их движение.

Некоторые из наиболее распространенных примеров включают Paramecium caudatum и Vorticella campanula, которые живут свободно.Эти одноклеточные организмы, известные как инфузории, также могут иметь выступы вокруг рта для кормления. Паразитарная форма Ciliophora включает Balantidium coli.

Sporozoa

По сути, Sporozoa — это паразитические формы, у которых отсутствуют двигательные структуры. Общие примеры Sporozoa включают виды Plasmodium, вызывающие малярию у человека-хозяина.


По данным Центра по контролю и профилактике заболеваний, на Земле проживает примерно 1 человек.5 миллионов видов грибов. Из них идентифицировано более 800 видов одноклеточных грибов (дрожжей).

Подобно простейшим, дрожжи также являются эукариотическими клетками, что означает, что они обладают клеточным ядром и другими клеточными органеллами.

Обычно они встречаются во влажных средах и включают:

Виды Saccharomyces Cerevisiae

Это зарождающиеся дрожжи, которые, как известно, превращают углеводы в углекислый газ и спирты.Этот вид дрожжей особенно используется в пищевой промышленности и особенно для выпечки хлеба. Углекислый газ, образующийся при расщеплении углеводов, заставляет тесто подниматься. Поскольку при этом также образуется спирт, дрожжи также используются в спиртовой промышленности.

Патогенные дрожжи

Хотя некоторые дрожжи полезны и используются в таких промышленности, как пищевая промышленность, другие являются патогенными и имеют тенденцию вызывать болезни.В основном это условно-патогенные микроорганизмы, что означает, что они вызывают инфекции среди людей с ослабленной иммунной системой. Пример патогенного дрожжи включают Cryptococcus neoformans, которые, как было показано, вызывают системные инфекции.


Водоросли

Водоросли включают разнообразную группу фотосинтетических организмы, которые можно найти в самых разных средах обитания (от водных до наземных). В одноклеточные водоросли — это в основном автотрофы, похожие на растения, которые могут создавать свои собственные еда.

Есть пять основных подразделений одноклеточных водорослей, включая:

Chlorophyta (зеленые водоросли) — Chlorophyta зеленые в цвет из-за наличия хлорофилла.Они также могут содержать каротиноидные пигменты и такие, как хламидомонада, которые используют жгутик для движения.

Charophyta — Отдел Charophyta включает некоторых представителей класса Zygnemophyceae, таких как Zygnematales. Подвижный клетки в этом делении также обладают жгутиками и в большинстве своем раздвоены.

Euglenophyta — Хороший пример этого деление — клетка эвглены. Эти клетки имеют большое ядро, а также ядрышко.В них также есть хлорофилл и каротидные пигменты, которые делают возможным фотосинтез. Эти клетки также используют жгутики для движения.

Chrysophyta — Диатомовые водоросли являются одними из самый обычный Chrysophyta. Они вложены в клеточной стенке, которая состоит из диоксида кремния и может существовать как отдельные клетки или в колонии.

Pyrrophyta — одни из самых распространенных Pyrrophyta включает динофлагеллаты, такие как морские планктоны.Они также включают амебоидные клетки и обладают хлорофиллом и такими пигментами, как каротиноид и пигменты ксантофилла.


Археи

Археи, как и бактерии, являются прокариотами, которые означает, что они лишены четко определенного ядра и мембраносвязанных органелл. Хотя археи являются прокариотами, как бактерии, они отличаются что касается их биохимии, которая отличает их от бактерий и другие одноклеточные эукариоты. Например, в отличие от бактерий, клеточная стенка архей отсутствие пептидогликана.

Кроме того, в липидах архей отсутствуют жирные кислоты (жирные кислоты заменены изопреновыми звеньями), которые можно найти как в бактериях, так и в эукариоты. Хотя идентификация и классификация архей были Показано, что это довольно сложно, их можно сгруппировать в следующие типы.

Crenarchaeota — Тип Crenarchaeota в основном состоит из гипертермофилов и термоацидофилов, оба из которых могут быть описаны как экстремофилы.

Экстремофилов можно встретить в морских окружающей среды, а также других экстремальных сред, таких как горячие и кислотные пружины. Хорошим примером экстремофилов является Sulfolobus acidocaldarius, который может можно найти в земных сольфатарных источниках.

Euryarchaeota — этот тип в основном состоит из галофилов (например, Halobacterium) и метаногенов (например, Methanococcus). Галофилы в основном встречаются в таких соленых средах, как Мертвое море, в то время как метаногены также можно найти в кишечнике животных (коров и людей) как в заболоченных местах.

Korachaeota — В отличие от Crenarchaeota и Euryarchaeota, тип Korachaeota, как было показано, состоит из более примитивные члены, теплолюбивые по своей природе. Их также можно найти только в гидротермальные среды и включают вид Candidatus.

Подробнее о клетках:

Эукариоты — клеточная структура и различия

Прокариоты — клеточная структура и различия

Протисты — открытие Kingdon Protista при микроскопии

Диатомовые водоросли — Классификация и характеристики

Грибы — Плесень под микроскопом, Aspergillus type

Водоросли — размножение, идентификация и классификация

Простейшие — анатомия, классификация, жизненный цикл и микроскопия

Бактерии — морфология, типы, среда обитания, глядя на анаэробы, эубактерии

Археи — определение, примеры, характеристики и классификация

См. Также:

Микроскопия инфузорий

Бактерии под микроскопом

Здесь можно узнать больше о делении клеток, дифференцировке клеток, пролиферации клеток и пентозофосфатном пути.

См. Статьи о культуре клеток, окрашивании клеток и окрашивании по Граму.

В чем разница между растительной клеткой и животной клеткой?

Ознакомьтесь с информацией по теории клеток.

Вернуться к фотосинтетическим бактериям

Проверить многоклеточные организмы — развитие, процессы и взаимодействия

Вернуться от одноклеточных организмов к MicroscopeMaster Research Home

сообщить об этом объявлении


Список литературы

Hawksworth, D.L. 2001. Величина грибного разнообразия: 1.Пересмотрена оценка 5 миллионов видов. Микологические исследования 105: 1422-1432.

Kallmeyer, J., Pockalny, R., Adhikari, R., Smith, D. & D’Hondt, S. Proc. Natl Acad. Sci. США http://dx.doi.org/10.1073/pnas.1203849109 (2012).

Кеннет Дж. Лосея и Джей Т. Леннона (2015) Законы масштабирования предсказывают глобальное микробное разнообразие.

М.Дж. Бентон Биоразнообразие на суше и в море. Геол. J., 36 (2001), pp. 211-230

Простейшие: структура, классификация, рост и Разработка.Роберт Дж. Ягер 1996. Колумбийская электронная энциклопедия, 6-е изд. Авторское право © 2012, Columbia University Press. Все права защищены.

Ссылки

https://www.classzone.com/science_book/mls_grade6_FL/255_260.pdf

https://www.cdc.gov/fungal/diseases/index.html#one

Организм — определение, типы и примеры

Определение организма

Организм — это отдельная личность или существо.Хотя у него может быть много отдельных частей, организм не может выжить без частей, поскольку части не могут выжить без организма. Некоторые организмы просты и содержат только информационную молекулу, описывающую, как получить энергию и воспроизвести молекулу. Другие более сложные многоклеточные организмы проходят сложные ритуалы спаривания, чтобы ввести вместе две гаплоидные клетки, которые сливаются и становятся новым организмом. Поскольку разнообразие жизни на Земле огромно, определение организма все еще меняется, и все время появляются новые определения того, что считается организмом.

Типы организмов

Ученые классифицируют организмы на 3 области и 6 царств, хотя на протяжении истории это менялось. Существует 3 признанных домена или самая широкая классификация организмов. Это бактерии, археи и эукарии.

Бактерии

В простейшем случае организмом может быть бактерия, молекула ДНК, содержащая генетическую информацию, заключенную в защитную плазматическую мембрану. Организмы стремятся отделять свои информационные молекулы от внешней среды, где изменения pH и неизвестные химические вещества могут нанести вред молекуле.Бактерии содержат свою ДНК в простом кольце и реплицируют ее посредством процесса, известного как бинарное деление. ДНК реплицируется так, что существует два кольца, и клетка делит свое содержимое пополам, каждое из которых получает одно кольцо ДНК.

Хотя бактерии — одни из самых маленьких организмов на Земле, они могут оказывать огромное влияние. Считается, что почвенные бактерии могут ускорить последствия изменения климата и что бактерии в кишечнике коровы могут быть ответственны за большую часть парниковых газов в атмосфере.Другие бактерии помогают нам переваривать пищу, а некоторые могут вызывать болезни.

Археи

Домен «Археи» содержит бактериоподобные организмы, не связанные с бактериями и способные выполнять самые разные функции. Например, многие археи живут в самых экстремальных условиях на планете, от гидротермальных источников до озер, настолько соленых, что никакая другая жизнь не может возникнуть. Однако археи также существуют в большинстве «нормальных» местообитаний. Считается, что организмы архей, бактерий и эукарий отделились друг от друга на ранней стадии существования жизни на Земле.Археи демонстрируют высокий уровень устойчивости к антибиотикам, и считается, что они могли развиться в ответ на простой антибиотик, продуцируемый организмами во время дивергенции.

Один из новейших генетических методов, полимеразная цепная реакция (ПЦР), основан на ферменте, продуцируемом архейским организмом, Thermus aquaticus . Фермент полимераза, продуцируемый этим организмом, очень эффективен в репликации ДНК и может работать при высоких температурах. Это хорошо, потому что для ПЦР требуется циклическое переключение ДНК на высокую и низкую температуру, чтобы воспроизвести ее быстрее.Фермент Taq-полимераза , как его называют, позволяет нам производить огромное количество ДНК за короткое время. Это увеличенное количество ДНК позволяет легко изучать генетический код организмов.

Эукария

В эукариоте или организме, который имеет связанное с мембраной ядро ​​и органеллы, ДНК содержится в ядре, а высокоспециализированные органеллы выполняют различные функции клетки. Некоторые эукариоты становятся очень сложными многоклеточными организмами.Затем отдельные клетки группируются в ткани, которые образуют органы. Эти органы позволяют таким крупным животным, как мы, двигаться, есть и размножаться. Большинство организмов, о которых вы можете подумать, — это эукариоты.

Вся жизнь эукариот начинается с одной клетки. Клетка делится в процессе митоза и становится множеством клеток. По мере того, как клетки начинают специализироваться, им посылаются разные сигналы, химически или электрически, и они растут или изменяются по мере необходимости. Таким образом, крупные организмы могут управлять процессами своего тела за счет выделения химических веществ или через нервную систему.

Организмы в Эукарии включают 5 царств: Animalia, Plantae, Fungi, Protozoa и Chromista. Простейшие и хромистаны — это одноклеточные организмы, которые имеют мембраносвязанные органеллы и ядра. К грибам относятся грибы, плесень и дрожжи. Plantae — большая и разнообразная группа, которая включает в себя все, от одноклеточных водорослей до крупнейших организмов на планете: деревьев. Animalia содержит большую часть типичных многоклеточных организмов, которые мы могли бы увидеть в зоопарке.

Вирусов

Некоторые ученые даже считают вирусы организмами, поскольку они представляют собой самовоспроизводящиеся информационные молекулы, обычно защищенные белковой оболочкой.Затем вирус использует механизмы инфицированной клетки для самовоспроизведения. Сторонники классификации вируса как организма указывают на это, в то время как другие ученые отмечают, что в отличие от живого организма вирус не создает и не хранит энергию или механизмы для этого. В то время как споры продолжаются, важно отметить, что определение жизни не статично. Находятся новые доказательства, создаются методы наблюдения и каждый день совершаются прорывы. Возможно, совсем скоро жизнь будет найдена на другой планете, которая действует совершенно иначе, чем жизнь на Земле.

Примеры организмов

Пчелы

Пчелы являются примером организмов, которые живут в обществе. Многие пчелы собирают сладкий нектар с цветов, которые они хранят в своем улье. Они защищают улей и сообща работают над его постройкой и ремонтом. Улей обычно прикреплен к другому организму — дереву. Это пример мутуалистических отношений между организмами. Пчёлам предоставляется место на земле, вдали от медведей и других животных, которые хотят есть их мед.Дерево снабжено источником опыления для размножения. Пчелы также являются крупными опылителями сельскохозяйственных культур. Фактически, было подсчитано, что без пчел урожай на миллиарды долларов не смог бы опыляться. Это пугающий факт, учитывая, что численность пчел во всем мире сокращалась на протяжении десятилетий.

Ленточные черви

Ленточные черви являются примером паразитического организма или организма, который для выживания питается другими организмами. Ленточный червь живет в кишечнике млекопитающих и питается растворенными питательными веществами, которые млекопитающее с таким трудом собирает.Ленточные черви размножаются в кишечнике, откладывают яйца в фекалиях, и новые животные подвергаются воздействию при контакте с яйцами, которые могут оставаться в состоянии покоя в почве в течение многих лет. Паразитизм — это тип взаимоотношений между организмами, при котором один организм получает выгоду, а один организм страдает. Одиночные паразиты не часто убивают своего хозяина, потому что при этом они теряют дом. Однако сильное заражение паразитами может привести к недоеданию и даже смерти, если не лечить.

Большая белая акула

Большая белая акула, считающаяся вершиной пищевой цепи в океане, является самым хищным организмом.Обостренное обоняние акулы позволяет ей отслеживать запах крови на многие мили под водой, приводя ее к раненым животным и трупам, которые она может поглотить. Большая белая акула — одна из немногих, когда-либо задокументированных акул, выпрыгивающих из воды при ударе по добыче. Большие белые часто питаются тюленями, которые очень подвижны и могут опередить акулу. Однако акулы обычно бьют снизу, оттачивая тюлень и поражая его на большой скорости. Клетки вокруг рта акулы чувствительны к небольшим электрическим импульсам, испускаемым добычей, и акула может буквально почувствовать свою добычу, прежде чем она коснется ее.Это делает большую белую особь хищным организмом.

  • Органелла — мембраносвязанный мешок, который выполняет определенную функцию для клетки.
  • Орган — Набор тканей или группа клеток в организме, которые выполняют определенную функцию для организма.
  • Эукариотический — Клетка с мембраносвязанными органеллами и ядром.
  • Прокариотическая — Клетка без мембраносвязанных органелл или ядра.

Тест

1. Один синий кит весит почти 40 000 фунтов. Колония осиновых деревьев с общей корневой системой, полученных из одного и того же семени, весит почти 13 000 000 фунтов. Общий вес всех бактерий на Земле составляет примерно 1,1 x 1014, или 110 000 000 000 000 фунтов. Какой самый большой организм на Земле?
A. Blue Whale
B. Aspen Tree
C. Бактерии

Ответ на вопрос № 1

B правильный.Хотя синий кит массивен, он не может сравниться с клоновой осиной рощей. Хотя деревья для нас выглядят как отдельные люди, все они связаны с массивной подземной корневой системой. Считается, что самому старому известному дереву, «Пандо», 80 000 лет. Бактерии, будучи массивными вместе, представляют собой триллионы отдельных организмов, каждый из которых независим друг от друга. Убери одну бактерию, с остальными все будет хорошо. Могут быть потеряны корни Пандо и миллионы деревьев. Именно поэтому осина является самым большим живым организмом.

2. Многие растения дают потомство в виде семян. Чтобы создать семена, мужская гамета должна соответствовать женской гамете, и должно произойти оплодотворение. Это может произойти со многими яйцами одновременно, и многие растения одновременно готовят огромное количество семян. Вы видите во дворе одуванчик. Желтые лепестки трех разных цветов были заменены белым слоем, соединенным с сотнями семян. Сколько организмов присутствует?
A. 1
B. <300
C. > 300

Ответ на вопрос № 2

C правильный. Само растение представляет собой 1 организм. Каждое семя также представляет собой отдельный организм, потому что они были созданы после того, как две гаплоидные клетки создали зиготу. Эта зигота может стать целым растением. Таким образом, с 3 цветками и более чем сотней семян в каждом растении одуванчика присутствует более 300 организмов. Прохладный!

3. Инопланетяне посещают нашу планету. Они добавляют нас к своей категоризации жизни как области «Землярия».Были бы они неправы?
A. Да
B. Нет
C. Hmm…

Ответ на вопрос № 3

B правильный. Системы классификации — это просто представление о различных отношениях между животными. Поскольку считается, что вся жизнь на Земле имеет один и тот же корень, ученые сосредоточены на отношениях между жизнью на Земле. С точки зрения инопланетянина, было бы вполне разумно классифицировать все земные организмы вместе.

Шесть королевств от Veritas Prep | Veritas Prep

Главная> Все предложения продуктов> Шесть королевств от Veritas Prep

Шесть королевств, Veritas Prep

В мире существует бесчисленное множество организмов, и была введена научная система классификации, чтобы сгруппировать виды, имеющие общие характеристики. Эта классификационная система уходит корнями в работу Карла Линнея, известного как основоположник современной таксономии. Система научной классификации в биологии состоит из семи различных групп или рейтингов.Эти рейтинги включают царство, тип, класс, отряд, семейство, род и вид. Говоря о научной классификации, можно заметить, что все научные названия и термины написаны на латыни. Идея использовать латынь принадлежала Карлу Линнею, и он считал, что латинские термины будут означать одно и то же для ученых всего мира, тогда как общие имена в разных языках различаются и могут вызвать путаницу. Эта статья будет посвящена разделу царства системы научной классификации.Есть шесть царств, включая растения, животных, грибы, простейшие, архебактерии и эубактерии.

Царство животных Царство животных (на латыни Animalia) — самое большое из шести царств, насчитывающее более одного миллиона видов. Представители животного царства отличаются своей способностью получать энергию от еды. Все виды в животном царстве также многоклеточны, и клетки видов в этом царстве имеют ядро, но не имеют хлоропластов или клеточной стенки.Примеры видов в животном мире включают всех млекопитающих, рептилий, птиц, насекомых и других.

Другие популярные темы и места

Царство растений Царство растений (по-латыни Plantae) — второе по величине из всех царств, насчитывающее более 250 000 видов. Царство растений включает все виды растений, включая мхи, цветущие растения и папоротники. Виды в царстве растений состоят из сложных клеток и многоклеточны.Виды в этом королевстве также являются автотрофами, что означает, что они сами производят пищу. Некоторые примеры видов в царстве растений включают деревья, цветы и даже фрукты и овощи.

Архебактерии Царство архебактерий (по-латыни Archaebacterium) состоит из одноклеточных организмов, а название царства означает «древние бактерии». Ученые действительно считают, что представители царства архебактерий были одними из первых форм жизни на Земле миллиарды лет назад.У этих видов отсутствует клеточная структура, и их генетический материал не содержится внутри ядра. Клетки архебактерий называют прокариотами. Известно, что архебактерии обитают в экстремальных условиях, включая очень жаркие, без кислорода и очень кислые. Архебактерии отделены от эубактерий, потому что их клеточная структура очень отличается.

Эубактерии Царство эубактерий (Eubacterium на латыни) состоит из одноклеточных организмов, и, как и у архебактерий, у видов этого царства отсутствует ядерная мембрана.Виды в этом царстве различаются, так как некоторые из них могут сами готовить себе пищу, а другие должны искать себе пищу. Эубактерии могут очень быстро размножаться, разделившись на две части. В зависимости от вида эубактерий они могут быть полезными или вредными для человека и других организмов. Некоторые примеры видов в царстве эубактерий включают стрептококки, вызывающие ангины, а также бактерии, производящие йогурт и некоторые типы витаминов.

Грибки Царство грибов (по-латыни — Fungi) состоит из многоклеточных организмов, а также некоторых одноклеточных организмов.Члены царства грибов размножаются спорами и имеют клеточные стенки, окружающие их клетки, подобно растениям, но с клеточными стенками, сделанными из других материалов. Члены царства грибов также отличаются от растений, потому что они не могут производить свою собственную пищу и вместо этого должны питаться мертвыми или живыми организмами. Многие виды грибов считаются разложителями в пищевой цепи. Примеры грибов включают дрожжи, грибы и некоторые плесени.

Протисты Царство протистов (Protista на латыни) состоит в основном из одноклеточных организмов, но включает в себя некоторые многоклеточные организмы, не имеющие сложной структуры.Клетки простейших организмов действительно содержат ядро. Это царство состоит из видов, которые не очень легко вписываются в другие царства, такие как царство растений, животных и грибов. Некоторые протисты, такие как парамеций и амеба, питаются другими организмами, в то время как другие, такие как водоросли, могут самостоятельно добывать пищу в процессе фотосинтеза.

Бизнес-школы и руководства по программе MBA

микробиология | Определение, история и микроорганизмы

Микробиология , изучение микроорганизмов или микробов, разнообразной группы, как правило, мелких простых форм жизни, которые включают бактерии, археи, водоросли, грибы, простейшие и вирусы.Эта область связана со структурой, функцией и классификацией таких организмов, а также со способами эксплуатации и контроля их деятельности.

Британская викторина

Наука в случайном порядке викторина

К какому царству принадлежат грибы? Какой динозавр был хищником размером с курицу? Проверьте свои знания обо всем в науке с помощью этой викторины.

Открытие в 17 веке живых форм, невидимых невооруженным глазом, стало важной вехой в истории науки, поскольку с 13 века постулировалось, что «невидимые» сущности ответственны за распад и болезни. Слово микроб было придумано в последней четверти 19 века для описания этих организмов, которые считались родственными. Поскольку микробиология в конечном итоге превратилась в специализированную науку, было обнаружено, что микробы представляют собой очень большую группу чрезвычайно разнообразных организмов.

Повседневная жизнь неразрывно связана с микроорганизмами. Помимо заселения как внутренней, так и внешней поверхности человеческого тела, микробы изобилуют почвой, морями и воздухом. Обильные, хотя обычно и незамеченные, микроорганизмы являются достаточным доказательством своего присутствия — иногда неблагоприятно, например, когда они вызывают разложение материалов или распространяют болезни, а иногда и благоприятно, когда они сбраживают сахар в вино и пиво, вызывают поднятие хлеба, ароматизатор сыров и т. Д. и производить ценные продукты, такие как антибиотики и инсулин.Микроорганизмы имеют неисчислимое значение для экологии Земли, разлагая останки животных и растений и превращая их в более простые вещества, которые могут быть переработаны в других организмах.

Streptococcus pyogenes

Микрофотография Streptococcus pyogenes , бактерии, вызывающей скарлатину. (Увеличение около 900 ×.)

Центры по контролю и профилактике заболеваний (CDC) (Номер изображения: 2110)

Историческая справка

Микробиология по существу началась с разработки микроскопа.Хотя другие, возможно, видели микробы до него, именно Антони ван Левенгук, голландский торговец тканями, чьим хобби было шлифование линз и изготовление микроскопов, был первым, кто предоставил надлежащую документацию своих наблюдений. Его описания и рисунки включали простейших из кишечников животных и бактерий из соскобов зубов. Его записи были превосходными, потому что он производил увеличительные линзы исключительного качества. Левенгук передал свои открытия в серии писем Британскому королевскому обществу в середине 1670-х годов.Хотя его наблюдения вызвали большой интерес, никто не предпринимал серьезных попыток ни повторить, ни расширить их. Таким образом, «анималькулы» Левенгука, как он их называл, оставались для ученых того времени всего лишь диковинкой природы, и энтузиазм в отношении изучения микробов медленно рос. Только позже, во время возрождения в 18 веке давних споров о том, может ли жизнь развиваться из неживого материала, значение микроорганизмов в схеме природы, а также в здоровье и благополучии людей стало очевидным.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Спонтанное зарождение против биотического зарождения жизни

Ранние греки считали, что живые существа могут происходить из неживой материи (абиогенез) и что богиня Геа может создавать жизнь из камней. Аристотель отверг это представление, но по-прежнему считал, что животные могут возникать спонтанно из разнородных организмов или из почвы. Его влияние на эту концепцию спонтанного зарождения ощущалось еще в 17 веке, но к концу этого века началась цепочка наблюдений, экспериментов и аргументов, которые в конечном итоге опровергли эту идею.Это продвижение в понимании происходило тяжело, включая серию событий, при которых силы личности и индивидуальной воли часто скрывали факты.

Хотя итальянский врач Франческо Реди в 1668 году опроверг предположение, что высшие формы жизни могут возникать спонтанно, сторонники этой концепции утверждали, что микробы были другими и действительно возникли таким образом. Такие выдающиеся имена, как Джон Нидхэм и Лаззаро Спалланцани, были противниками в этих дебатах в середине 1700-х годов. В начале XIX века Франц Шульце и Теодор Шванн были главными фигурами в попытке опровергнуть теории абиогенеза, пока Луи Пастер, наконец, не объявил результаты своих убедительных экспериментов в 1864 году.В серии мастерских экспериментов Пастер доказал, что только уже существующие микробы могут дать начало другим микробам (биогенез). Современные и точные знания о формах бактерий можно приписать немецкому ботанику Фердинанду Кону, основные результаты которого были опубликованы между 1853 и 1892 годами. Классификация бактерий Кона, опубликованная в 1872 году и расширенная в 1875 году, преобладала в последующем изучении этих организмов.

Джироламо Фракасторо, итальянский ученый, еще в середине 1500-х годов выдвинул идею о том, что инфекция — это инфекция, передающаяся от одного предмета к другому.Описание того, что именно происходит, ускользало от открытия до конца 1800-х годов, когда работа многих ученых, в первую очередь Пастера, определила роль бактерий в ферментации и болезнях. Роберт Кох, немецкий врач, определил процедуру (постулаты Коха) для доказательства того, что конкретный организм вызывает конкретное заболевание.

Основы микробиологии были прочно заложены в период примерно с 1880 по 1900 годы. Студенты Пастера, Коха и других быстро открыли множество бактерий, способных вызывать определенные заболевания (патогены).Они также разработали обширный арсенал методов и лабораторных процедур для выявления повсеместности, разнообразия и способностей микробов.

Прогресс в 20 веке

Все эти события произошли в Европе. Только в начале 1900-х годов микробиология утвердилась в Америке. Многие микробиологи, работавшие в то время в Америке, учились либо у Коха, либо в Институте Пастера в Париже. После своего основания в Америке микробиология процветала, особенно в отношении таких смежных дисциплин, как биохимия и генетика.В 1923 году американский бактериолог Дэвид Берджи установил этот научный ориентир, обновленные редакции которого используются и сегодня.

С 1940-х годов микробиология пережила чрезвычайно продуктивный период, в течение которого были идентифицированы многие болезнетворные микробы и разработаны методы борьбы с ними. Микроорганизмы также эффективно используются в промышленности; их деятельность была направлена ​​на то, чтобы ценные продукты стали жизненно важными и повседневными.

Изучение микроорганизмов также продвинуло знания обо всем живом. С микробами легко работать, и поэтому они представляют собой простой инструмент для изучения сложных жизненных процессов; как таковые они стали мощным инструментом для изучения генетики и метаболизма на молекулярном уровне.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>