углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).
Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.
Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.
Общая формула углеводов:
Cn(h3O)m.
Углеводы состоят из углерода, водорода и кислорода.
В состав производных углеводов могут входить и другие элементы.
Растворимые в воде углеводы. Моносахариды и дисахариды
Пример:
из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.
Глюкоза — основной источник энергии для клеточного дыхания.
Фруктоза — составная часть нектара цветов и фруктовых соков.
Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.
Пример:
сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:
сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.
Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.
Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.
Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.
Нерастворимые в воде полисахариды
Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.
Пример:
полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.
Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.
Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.
Целлюлоза нерастворима в воде и обладает высокой прочностью.
Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Источники:
http://www.bestreferat.ru/referat-100195.html
Углеводы, их строение и роль в клетке | Биология. Реферат, доклад, сообщение, краткое содержание, конспект, сочинение, ГДЗ, тест, книга
Тема: Микробиология
Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Различают три основных класса углеводов: моносахариды, олигосахариды и полисахариды, различающиеся и числом мономерных звеньев.
Моносахариды — бесцветные, твердые кристаллические вещества, легко растворимые в воде, имеющие сладкий вкус. Самые распространенные в природе гексозы — глюкоза и фруктоза. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот. Дисахариды образованы двуми моносахаридами. Они обладают теми же свойствами, что и моносахариды. Наиболее часто встречаются мальтоза, или солодовый сахар, лактоза, входящая в состав молока, сахароза или свекловичный сахар.
Полисахариды — это биополимеры. Содержат большое число моносахаридных остатков и обладают высокой молекулярной массой. Они не растворимы в воде и несладкие на вкус. Наиболее распространены такие полимеры глюкозы, как крахмал и целлюлоза — у растений; гликоген и хитин — у животных. Крахмал и гликоген играют роль аккумуляторов энергии. Целлюлоза — основной компонент клеточных оболочек растений, хитин — образует покровы у членистоногих животных, входит в состав клеточных оболочек многих грибов.
Функции углеводов: Материал с сайта //iEssay.ru
- Энергетическая функция. Углеводы являются основным источником энергии для живых организмов. При растеплении одного грамма углеводов освобождается 17,6 кДж.
- Структурная функция. Углеводы и их производные входят в состав многих тканей живых организмов.
- Функция запаса питательных веществ. Полисахариды накапливаются в клетках и расходуются по мере возникновения потребности в энергии.
Углеводы
Углеводы
Общая характеристика. Углеводами называют вещества с общей формулой Сn (H2 O) m, где пит могут иметь разные значения. Само название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих вешеств в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.
Углеводы — одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также входят в состав клеток всех других организмов. В животной клетке содержится I—2% углеводов, в растительных в некоторых случаях — 85—90%.
Выделяют три группы углеводов:
- моносахариды, или простые сахара;
- олигосахариды (греч. oligos — немногочисленный) — соединения, состоящие из 2—10 последовательно соединенных молекул простых Сахаров;
- полисахариды, состоящие более чем из 10 молекул простых Сахаров или их производных.
Моносахариды, Это соединения, в основе которых лежит не-разветвленная углеродная цепочка, в которой при одном из атомов углерода находится карбонильная группа (С=0), а при всех остальных — по одной гидроксильной группе. В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (С3), гетрозы (С4), пентозы (С5), гексозы (С6), гептозы (С7).
Примерами пентоз являются рибоза, дезоксирибоза, гексоз-глюкоза, фруктоза, галактоза.Моносахариды хорошо растворяются в воде, они сладкие на вкус. В водном растворе моносахариды, начиная с пентоз, приобретают кольцевую форму.
Циклические структуры пентоз и гексоз — их обычные формы; в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов. Кроме Сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.
Олигосахариды. При гидролизе олигосахариды образуют несколько молекул простых Сахаров.
К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар):
глюкоза + глюкоза = мальтоза;
глюкоза + галактоза — лактоза;
глюкоза + фруктоза = саxароза.
Эти сахара называют также дисахаридами. Мальтоза образуется из крахмала в процессе его расщепления под действием ферментов амилаз. Лактоза содержится только в молоке. Сахароза наиболее распространена в растениях.
По своим свойствам дисахариды близки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.
Полисахариды. Это высокомолекулярные (до 10 000 000 Да) биополимеры, состоящие из большого числа мономеров — простых Сахаров и их производных.
Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисаха-риды (крахмал, целлюлоза, хитин и др.), во втором — гетеро-полисахариды (гепарин).
Полисахариды могут иметь линейную, неразветвленную структуру (целлюлоза) либо разветвленную (гликоген). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться. 0% целлюлозы.
Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку железы желудочно-кишечного тракта не образуют фермента целлюлазы, расщепляющей целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, так как они придают пище грубую консистенцию, объемность и стимулируют перистальтику кишечника.
Крахмал (у растений) и гликоген (у животных, человека и грибов) являются основными запасными полисахаридами по ряду причин: будучи нерастворимыми в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что важно при длительном нахождении их в живой клетке. Твердое, обезвоженное состояние полисахаридов способствует увеличению полезной массы продукта запаса за счет экономии объема, причем существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другими микроорганизмами. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.
Хитин образован молекулами pVD-глюкозы, в которой гидро-ксильная группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин — основной структурный элемент покровов членистоногих и клеточных стенок грибов.
Функции углеводов:
- Энергетическая. Глюкоза — основной источник энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания. Крахмал и гликоген составляют энергетический запас в клетках.
- Структурная, Целлюлоза входит в состав клеточных оболочек растений; хитин служит структурным компонентом покровов членистоногих и клеточных стенок многих грибов. Некоторые олигосахариды — составная часть цитоплазмати-ческой мембраны клетки (в виде гликопротеинов и гликолипи-дов), образующая гликокаликс.Пентозы участвуют в синтезе нуклеиновых кислот (рибоза входит в состав РНК, дезоксирибоза — в состав ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозо-дифосфат является акцептором С02 в темновой фазе фотосинтеза).
- Защитная. У животных гепарин препятствует свертыванию крови, у растений камеди и слизи, образующиеся при повреждении тканей, выполняют защитную функцию.
Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов «Пособие по биологии для поступающих в ВУЗы»
Изучаем биологию: Углеводы
Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % сахара.К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины. Из всех потребляемых человеком пищевых веществ углеводы, несомненно, являются главным источником энергии. В среднем на их долю приходится от 50 до 70% калорийности дневных рационов. Несмотря на то, что человек потребляет значительно больше углеводов, чем жиров и белков, их резервы в организме невелики. Это означает, что снабжение ими организма должно быть регулярным.
Потребности в углеводах в очень большой степени зависят от энергетических трат организма. В среднем у взрослого мужчины, занятого преимущественно умственным или легким физическим трудом, суточная потребность в углеводах колеблется от 300 до 500 г. У работников физического труда и спортсменов она значительно выше. В отличие от белков и в известной степени жиров, количество углеводов в рационах питания без вреда для здоровья может быть существенно снижено. Тем, кто хочет похудеть, стоит обратить на это внимание: углеводы имеют главным образом энергетическую ценность. При окислении 1 г углеводов в организме освобождается 4,0 – 4,2 ккал. Поэтому за их счет легче всего регулировать калорийность питания.
Углеводы (сахариды) — общее название обширного класса природных органических соединений. Общую формулу моносахаридов можно написать как Сn(Н2О)n. В живых организмах наиболее распространены сахара с 5-ю (пентозы) и с 6-ю (гексозы) атомами углерода.
Углеводы делятся на группы:
Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Кроме небольших молекул, в клетке встречаются и крупные, они являются полимерами. Полимеры – это сложные молекулы, состоящие из отдельных «звеньев», соединенных друг с другом. Такие «звенья» называются мономерами. Такие вещества, как крахмал, целлюлоза и хитин, являются полисахаридами – биологическими полимерами.К моносахаридам относятся глюкоза и фруктоза, придающие сладость фруктам и ягодам. Пищевой сахар сахароза состоит из ковалентно присоединенных друг к другу глюкозы и фруктозы. Подобные сахарозе соединения называются дисахаридами. Поли-, ди- и моносахариды называют общим термином – углеводы. К углеводам относятся соединения, обладающие разнообразными и часто совершенно различными свойствами.
Таблица: Многообразие углеводов и их свойства.
Группа углеводов | Примеры углеводов | Где встречаются | свойства |
моносахара | рибоза | РНК | Сладкие на вкус, растворимые в воде, кристаллические, |
дезоксирибоза | ДНК | ||
глюкоза | Свекловичный сахар | ||
фруктоза | Фрукты, мед | ||
галактоза | В состав лактозы молока | ||
олигосахариды | мальтоза | Солодовый сахар | Сладкие на вкус, растворимые в воде, кристаллические, |
сахароза | Тростниковый сахар | ||
Лактоза | Молочный сахар в молоке | ||
Полисахариды (построены из линейных или разветвленных моносахаров) | крахмал | Растительный запасной углевод | Не сладкие, белого цвета, не растворяются в воде. |
гликоген | Запасной животный крахмал в печени и мышцах | ||
Клетчатка (целлюлоза) | Это строительный растительный углевод. Древесина растений | ||
хитин | Это строительный животный углевод. Панцирь и наружный скелет членистоногих, грибы | ||
муреин | Строительный углевод в стенках бактерий |
В организме углеводы выполняют ряд важных функций.
1. Энергетическая функция
При распаде и окислении углеводов выделяется энергия, которую организм использует для своих нужд. В среднем при окислении 1 г углеводов выделяется 4,1 килокалории (17,6 кДж) и 0,4 г воды. Для многих клеток человека (например, клеток мозга и мышц) глюкоза, приносимая кровью, служит главным источником энергии. Крахмал и очень похожее на него вещество животных клеток – гликоген – являются полимерами глюкозы, они служат для запасания ее внутри клетки.2. Структурная функция, то есть участвуют в построении разных клеточных структур.
Полисахарид целлюлоза образует клеточные стенки растительных клеток, отличающиеся твердостью и жесткостью, она – один из главных компонентов древесины. Другими компонентами являются гемицеллюлоза, также принадлежащая к полисахаридам, и лигнин (он имеет не углеводную природу). Хитин тоже выполняет структурные функции. Хитин выполняет опорную и защитную функции.Клеточные стенки большинства бактерий состоят из пептидогликана муреина – в состав этого соединения входят остатки как моносахаридов, так и аминокислот.
3. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).
Общая формула глюкозы – С6Н12О6, это альдегидоспирт. Глюкоза содержится во многих фруктах, соках растений и цветочном нектаре, а также в крови человека и животных. Содержание глюкозы в крови поддерживается на определенном уровне (0,65–1,1 г на л). Если искусственно снизить его, то клетки мозга начинают испытывать острое голодание, которое может закончиться обмороком, комой и даже смертельным исходом. Длительное повышение содержания глюкозы в крови тоже отнюдь не полезно: при этом развивается заболевание сахарный диабет.
Млекопитающие, и человек в том числе, могут синтезировать глюкозу из некоторых аминокислот и продуктов расщепления самой глюкозы – например, молочной кислоты. Они не умеют получать глюкозу из жирных кислот, в отличие от растений и микробов.
Взаимопревращения веществ.
Избыток белка——углеводы
Избыток жиров—————углеводы
Углеводы. Простые и сложные углеводы, их роль
Что такое углеводы
Углеводы — это органические вещества (биологические молекулы), состоящие из углерода, водорода и кислорода. Как правило, пропорция этих веществ в молекуле выражается формулой Cm(H2O)n, т.е. углерод + вода — откуда и пошло название углевод.
Например, химическая формула глюкозы (простого углевода) C6H12O6.
Функции углеводов в организме (биологическая роль)
Углеводы преимущественно используются организмом в качестве источника энергии. Например, упрощённо процесс получения энергии из глюкозы (основого и наиболее универсального углевода для человека и животных) можно проиллюстрировать химической формулой:
C6H12O6 + 6O2 → 6H2O + 6CO2 + Энергия.
Т.е. глюкоза окисляется с образованием энергии, воды и углекислого газа.
В организме из углеводов также могут синтезироваться липиды и некоторые аминокислоты. И углеводы входят в состав некоторых компонентов клеток.
Список продуктов с большим количеством углеводов
Таблица содержания углеводов в продуктах питания.
№ | Количество углеводов | Доля от суточной нормы на 100 г | |
---|---|---|---|
1 | Фруктоза заменитель сахара | 100,0 г | 32,3% |
2 | Стевия (сахарозаменитель) заменитель сахара | 100,0 г | 32,3% |
3 | Сахар сахарный песок | 100,0 г | 32,3% |
4 | Сахар коричневый | 98,1 г | 31,6% |
5 | Жевательная резинка | 96,7 г | 31,2% |
6 | Яблоки сушёные | 93,5 г | 30,2% |
7 | Помадка | 93,2 г | 30,1% |
8 | Крахмал кукурузный | 91,3 г | 29,4% |
9 | Сукралоза заменитель сахара | 91,2 г | 29,4% |
10 | Конфеты Skittles | 90,8 г | 29,3% |
11 | Ирис | 90,4 г | 29,2% |
12 | Воздушный рис готовый к употреблению | 89,8 г | 29,0% |
13 | Сахарин заменитель сахара | 89,1 г | 28,7% |
14 | Аспартам заменитель сахара | 89,1 г | 28,7% |
15 | Слива сушёная низкое содержание воды | 89,1 г | 28,7% |
16 | Тапиока в сухом виде | 88,7 г | 28,6% |
17 | Бананы сушёные | 88,3 г | 28,5% |
18 | Мука арроурут | 88,2 г | 28,4% |
19 | Отруби кукурузные необработанные термически | 85,6 г | 27,6% |
20 | Персик сушёный | 83,2 г | 26,8% |
21 | Крахмал картофельный | 83,1 г | 26,8% |
22 | Абрикосы сушёные низкое содержание воды | 82,9 г | 26,7% |
23 | Клюква сушёная | 82,8 г | 26,7% |
24 | Мука кукурузная | 82,8 г | 26,7% |
25 | Мёд | 82,4 г | 26,6% |
26 | Хлебцы ржаные | 82,2 г | 26,5% |
27 | Рис клейкий (липкий) в сухом виде | 81,7 г | 26,3% |
28 | Зефир (маршмэллоу) | 81,3 г | 26,2% |
29 | Картофельные хлопья в сухом виде (пюре быстрого приготовления) | 81,2 г | 26,2% |
30 | Рис пропаренный в сухом виде | 80,9 г | 26,1% |
31 | Корица порошок | 80,6 г | 26,0% |
32 | Лапша рисовая в сухом виде | 80,2 г | 25,9% |
33 | Мука рисовая | 80,1 г | 25,8% |
34 | Рис длиннозёрный в сухом виде | 80,0 г | 25,8% |
35 | Крупа кукурузная сухая | 79,9 г | 25,8% |
36 | Воздушная пшеница готовая к употреблению | 79,6 г | 25,7% |
37 | Морковь сушёная | 79,6 г | 25,7% |
38 | Изюм без косточек | 79,5 г | 25,7% |
39 | Рис в сухом виде | 79,3 г | 25,6% |
40 | Лапша кукурузная в сухом виде | 79,3 г | 25,6% |
41 | Крендельки без соли | 79,2 г | 25,5% |
42 | Рис круглозёрный в сухом виде | 79,2 г | 25,5% |
43 | Луковый порошок | 79,1 г | 25,5% |
44 | Попкорн карамельный | 79,1 г | 25,5% |
45 | Рис бурый пропаренный в сухом виде | 78,7 г | 25,4% |
46 | Манго сушёное | 78,6 г | 25,3% |
47 | Мука ячменная солодовая | 78,3 г | 25,3% |
48 | Манка крупа манная сухая | 78,0 г | 25,2% |
49 | Попкорн без соли | 77,9 г | 25,1% |
50 | Попкорн солёный | 77,8 г | 25,1% |
Вся таблица углеводов
Категория продуктов
Все продукты Мясо Мясо убойных животных Мясо диких животных (дичь) Субпродукты Мясо птицы (и субпродукты) Рыба Морепродукты (все категории) Моллюски Ракообразные (раки, крабы, креветки) Морские водоросли Яйца, яичные продукты Молоко и молочные продукты (все категории) Сыры Молоко и кисломолочные продукты Творог Другие продукты из молока Соя и соевые продукты Овощи и овощные продукты Клубнеплоды Корнеплоды Капустные (овощи) Салатные (овощи) Пряные (овощи) Луковичные (овощи) Паслёновые Бахчевые Бобовые Зерновые (овощи) Десертные (овощи) Зелень, травы, листья, салаты Фрукты, ягоды, сухофрукты Грибы Жиры, масла Сало, животный жир Растительные масла Орехи Крупы, злаки Семена Специи, пряности Мука, продукты из муки Мука и отруби, крахмал Хлеб, лепёшки и др. Макароны, лапша (паста) Сладости, кондитерские изделия Фастфуд Напитки, соки (все категории) Фруктовые соки и нектары Алкогольные напитки Напитки (безалкогольные напитки) Пророщенные семена Вегетарианские продукты Веганские продукты (без яиц и молока) Продукты для сыроедения Фрукты и овощи Продукты растительного происхождения Продукты животного происхождения Высокобелковые продукты
Содержание нутриента
ВодаБелкиЖирыУглеводыСахараГлюкозаФруктозаГалактозаСахарозаМальтозаЛактозаКрахмалКлетчаткаЗолаКалорииКальцийЖелезоМагнийФосфорКалийНатрийЦинкМедьМарганецСеленФторВитамин AБета-каротинАльфа-каротинВитамин DВитамин D2Витамин D3Витамин EВитамин KВитамин CВитамин B1Витамин B2Витамин B3Витамин B4Витамин B5Витамин B6Витамин B9Витамин B12ТриптофанТреонинИзолейцинЛейцинЛизинМетионинЦистинФенилаланинТирозинВалинАргининГистидинАланинАспарагиноваяГлутаминоваяГлицинПролинСеринСуммарно все насыщенные жирные кислотыМасляная к-та (бутановая к-та) (4:0)Капроновая кислота (6:0)Каприловая кислота (8:0)Каприновая кислота (10:0)Лауриновая кислота (12:0)Миристиновая кислота (14:0)Пальмитиновая кислота (16:0)Стеариновая кислота (18:0)Арахиновая кислота (20:0)Бегеновая кислота (22:0)Лигноцериновая кислота (24:0)Суммарно все мононенасыщенные жирные кислотыПальмитолеиновая к-та (16:1)Олеиновая кислота (18:1)Гадолиновая кислота (20:1)Эруковая кислота (22:1)Нервоновая кислота (24:1)Суммарно все полиненасыщенные жирные кислотыЛинолевая кислота (18:2)Линоленовая кислота (18:3)Альфа-линоленовая к-та (18:3) (Омега-3)Гамма-линоленовая к-та (18:3) (Омега-6)Эйкозадиеновая кислота (20:2) (Омега-6)Арахидоновая к-та (20:4) (Омега-6)Тимнодоновая к-та (20:5) (Омега-3)Докозапентаеновая к-та (22:5) (Омега-3)Холестерин (холестерол)Фитостерины (фитостеролы)СтигмастеролКампестеролБета-ситостерин (бета-ситостерол)Всего трансжировТрансжиры (моноеновые)Трансжиры (полиеновые)BCAAКреатинАлкогольКофеинТеобромин
Простые и сложные углеводы
Углеводы состоят из повторяющихся звеньев в виде цепочек. Каждое такое звено называется сахаридом. Организм для получения энергии сначала разбирает эти звенья (такой процесс называется гидролизом), а затем подвергает каждое звено гликолизу с последующим получением энергии.
Простые углеводы (быстрые)
Группу простых углеводов составляют моносахариды (один сахарид) и дисахариды (два сахарида). Их так же называют сахарами, они быстро и легко усваиваются.
Моносахариды
Простейшие углеводы состоят всего из одного сахарида и поэтому получили название моносахариды (такие углеводы уже не распадаются гидролизом на более простые).
Фруктоза, глюкоза и галактоза — это простые углеводы (моносахариды), они имеют одинаковую химическую формулу C6H12O6, но различаются пространственным строением и свойствами (такие молекулы называют изомерами).
Глюкоза и фруктоза в свободной форме содержатся в больших количествах в ягодах и фруктах. Эти моносахариды также входят в состав сложных углеводов: дисахаридов и полисахаридов.
Галактоза в природе в свободной форме встречается очень редко.
Дисахариды
Сахароза — это дисахарид. В быту сахароза известна как простой сахар (получаемый из сахарной свеклы и сахарного тростника).
Она состоит из двух сахаридов — фруктозы и глюкозы. Чтобы получить из сахарозы глюкозу и фруктозу, организм подвергает её гидролизу (в присутствии кислоты), что можно проиллюстрировать простой химической формулой:
C12H22O11 + H2O → C6H12O6 + C6H12O6
По аналогии дисахарид лактоза состоит из остатков двух моносахаридов: глюкозы и галактозы. Мальтоза состоит из двух остатков глюкозы.
Сложные углеводы (медленные) — полисахариды
Сложные углеводы состоят из длинных разветвлённых цепочек сахаридов. Сложные углеводы называют полисахаридами.
Полисахариды состоят из десятков, сотен или тысяч моносахаридов.
Клетчатка (целлюлоза) и крахмал — это полисахариды.
При полном гидролизе (в процессе пищеварения) крахмал в организме человека распадается на глюкозу.
Пищеварительные соки не способны разрушить клетчатку и выделить глюкозу, но она так же необходима пищеварению.
Гликоген — «животный крахмал» — тоже полисахарид. Организм синтезирует его из глюкозы и откладывает преимущественно в печени и мышцах. При необходимости организм легко отщепляет от этого полисахарида глюкозу и использует в качестве источника энергии.
Целлюлоза и хитин — полисахариды, выполняют роль опорного материала растений и животных. Очень интересно, как сахариды с одной стороны, являются прекрасным источником энергии, а с другой — структурными элементами с большой механической прочностью, например, входят в состав древесины или роговых оболочек насекомых.
Норма углеводов
Средняя суточная норма потребления углеводов составляет примерно 310 г. Потребление углеводов сильно зависит от дневной умственной и физической активности.
Относительная сладость углеводов
При употреблении простых углеводов мы ощущаем сладость. Если принять сладость сахарозы за 100, то сладость фруктозы будет равняться 173, а глюкозы — 74,3.
Откуда берутся углеводы в природе (биосинтез углеводов)
В природе углеводы синтезируют растения с помощью солнечной энергии из неорганических веществ — воды и оксида углерода — в процессе фотосинтеза:
xCO2 + yH2O → Cx(H2O)y + xO2
Травоядные животные получают эти углеводы напрямую от растений, а хищники — поедая травоядных.
Углеводы. Липиды — Биология Егэ
Воски — это сложные эфиры высших жирных кислот и высокомолекулярных спиртов. У растений они образуют пленку на поверхности органов — листьев, плодов. Эти соединения защищают наземные органы растений от излишней потери влаги, предотвращают проникновение патогенов и т. п. У насекомых они покрывают тело или служат для построения сот.
Гликолипиды также являются компонентами мембран, но их содержание там невелико.Нелипидная часть гликолипидов включает остаток углевода.
Функции липидов.
Запасающая – жиры, откладываются в запас в тканях позвоночных животных.
Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка.
Защитная – подкожный жировой слой защищает организм от механических повреждений.
Структурная – фосфолипиды входят в состав клеточных мембран.
Теплоизоляционная – подкожный жир помогает сохранить тепло.
Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма.
Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот.
Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.
Видео YouTube
ТЕМАТИЧЕСКИЕ ЗАДАНИЯ
Часть А
А1. Мономером полисахаридов может быть:
1) аминокислота
2) глюкоза
3) нуклеотид
4) целлюлоза
А2. В клетках животных запасным углеводом является:
1) целлюлоза
2) крахмал
3) хитин
4) гликоген
А3. Больше всего энергии выделится при расщеплении:
1) 10 г белка
2) 10 г глюкозы
3) 10 г жира
4) 10 г аминокислоты
А4. Какую из функций липиды не выполняют?
1) энергетическую
2)каталитическую
3) изоляционную
4) запасающую
А5. Липиды можно растворить в:
1) воде
2) растворе поваренной соли
3) соляной кислоте
4) ацетоне
Часть В
В1. Выберите особенности строения углеводов
1) состоят из остатков аминокислот
2) состоят из остатков глюкозы
3) состоят из атомов водорода, углерода и кислорода
4) некоторые молекулы имеют разветвленную структуру
5) состоят из остатков жирных кислот и глицерина
6) состоят из нуклеотидов
В2. Выберите функции, которые углеводы выполняют в организме
1) каталитическая
2) транспортная
3) сигнальная
4)строительная
5) защитная
6) энергетическая
ВЗ. Выберите функции, которые липиды выполняют в клетке
1) структурная
2) энергетическая
3) запасающая
4) ферментативная
5) сигнальная
6) транспортная
В4. Соотнесите группу химических соединений с их ролью в клетке:
РОЛЬ СОЕДИНЕНИЯ В КЛЕТКЕ | СОЕДИНЕНИЕ |
|
|
Часть С
С1. Почему в организме не накапливается глюкоза, а накапливается крахмал и гликоген?
Тест 2
Часть 1 содержит 10 заданий (А1-10). К каждому заданию приводится 4 варианта ответа, один из которых верный.
Часть 1
А 1. Моносахарид, в молекуле которого содержится пять атомов углерода
1. глюкоза
2. фруктоза
3. галактоза
4. дезоксирибоза
А 2. Химическая связь, соединяющая остатки глицерина и высших жирных кислот в молекуле жира
1. ковалентная полярная
2. ковалентная неполярная
3. ионная
4. водородная
А 3. Мономером крахмала и целлюлозы является
1. глюкоза
2. глицерин
3. нуклеотид
4. аминокислота
А 4. В каком из веществ растворятся липиды
1. вода
2. ацетон
3. физиологический раствор
4. соляная кислота
А 5. Зимостойкость растений повышается при накоплении в клетках:
1. крахмала
2. жиров
3. сахаров
4. минеральных солей
А 6. В каких продуктах содержится наибольшее количество углеводов, необходимых человеку?
1. в сыре и твороге
2. хлебе и картофеле
3. мясе и рыбе
4. растительном масле
А 7. Конечными продуктами гликогена в клетке являются
1. АТФ и вода
2. кислород и углекислый газ
3. вода и углекислый газ
4. АТФ и кислород
А 8. Запасным углеводом в животной клетке является
1. крахмал
2. гликоген
3. целлюлоза
4. хитин
А 9. Сок, не содержащий ферментов, но облегчающий всасывание жиров в тонком кишечнике
1. желудочный сок
2. поджелудочный сок
3. кишечный сок
4. желч
А 10. У человека углеводы пищи начинают перевариваться в
1. двенадцатипёрстной кишке
2. ротовой полости
3. желудке
4. толстом кишечнике
Часть 2 содержит 8 заданий (В1-В8): 3 – с выбором трёх верных ответов из шести, 3 – на соответствие, 2 – на установление последовательности биологических процессов, явлений, объектов.
Часть 2
В 1. Липиды, встречающиеся только у животных
1. холестерин
2. липопротеиды
3. триглицериды
4. фосфолипиды
5. желчные кислоты
6. тестостерон
В 2. Моносахаридами являются
1. рибоза
2. сахароза
3. лактоза
4. глюкоза
5. мальтоза
6. галактоза
В3. Сложные органические соединения, в молекулу которых входит углеводный компонент
1. рибонуклеотиды
2. фосфолипиды
3. дезоксирибонуклеотиды
4. аминокислоты
5. аденозинтрифосфат
6. холестерин
В 4. Формы углеводов в растительных и животных клетках
Клетка Углевод
А) растительные клетки 1. гликоген
Б) животные клетки 2. крахмал
3. целлюлоза
4. гепарин
В 5. Установите соответствие между характеристикой и органическим веществом
Характеристика Органическое вещество
1. Состоят из углерода, водорода и кислорода А. Углеводы
2. Низкая теплопроводность Б. Жиры
3. Образуют биополимеры – полисахариды
4. Обеспечивают взаимодействие клеток одного типа
5. Все они не полярны
6. Практически не растворимы в воде
В 6. Установите соответствие между углеводом и группой углеводов, к которой они относятся
Название углевода Группа углеводов
1.Глюкоза А. моносахариды
2. Сахароза Б. Дисахариды
3. Галактоза В. Полисахариды
4. Крахмал
5. Мальтоза
6. Лактоза
В 7. Расположите моносахариды в порядке возрастания числа атомов углерода в их молекуле
1. диоксиацетон (кетоза)
2. глюкоза
3. элитроза треоза
4. рибоза
5. глюкозамин
6. рамно-О
В 8. Расположите жиры в порядке возрастания атомов углерода в их молекуле
1. трипальмитин
2. тристеарин
3. трилаурин
4. трикаприлин
5. тримиристин
Часть 3 содержит 6 заданий. На задание С 1 дайте краткий свободный ответ, а на задания С2-С6 – полный развёрнутый ответ.
Часть 3
С 1. Какую роль для живых организмов играют фосфолипиды и гликолипиды?
С 2. Укажите номера предложений, в которых допущены ошибки. Объясните их.
1. Углеводы представляют собой соединения углерода и водорода.
2. Различают три класса углеводов – моносахариды, дисахариды и полисахариды.
3. Наиболее распространённые моносахариды – сахароза и лактоза.
4. Они растворимы в воде и обладают сладким вкусом.
5. При расщеплении 1 г. глюкозы выделяется 35,2 кДЖ энергии
С 3. Каковы функции углеводов в растительных клетках?
С 4. Объясните, почему запасающую функцию выполняют полисахариды, а не моносахариды?
Ответы:
Часть 1
А1-4 А6-2
А2-1 А7-3
А3-1 А8-2
А4-2 А9-4
А5-3 А10-2
Часть 2
В1-1 3 4
В2-1 4 6
В3-1 3 5
В4 -А 2 3, Б 1 4
В5-А 1 3 4, Б 2 5 6
В6-А1 3, Б 2 5 6, В 4
В7-1 3 4 2 5 6
В8-4 3 5 1 2
Часть 3
С 1. Фосфолипиды и гликолипиды являются компонентами клеточных мембран.
С 2. 1. углерода и воды.
3. дисахариды.
5. 17,6 кДЖ
С 3. 1. Моносахариды и дисахариды выполняют энергетическую функцию.
2. Крахмал – запасное питательное вещество.
3. Целлюлоза входит в состав клеточных стенок.
С 4. 1. Так как полисахариды не растворимы в воде, они не оказывают осмотического и химического действия на клетку.
2. В твёрдом и обезвоженном состоянии имеют меньший объём и большую полезную массу.
3. Менее доступны для болезнетворных бактерий и грибов, так как эти организмы пищу всасывают, а не заглатывают.
4. При необходимости легко превращаются в моносахариды.
Биологические молекулы • Джеймс Трефил, энциклопедия «Двести законов мироздания»
Жизнь — таинственная, сложная, загадочная — не что иное как совокупность достаточно крупных молекул и довольно простых химических реакций. Если бы вам понадобилось конструировать крупные молекулы, вы пошли бы по одному из двух путей. Либо, как в кустарном ювелирном деле, вы стали строить каждую молекулу «с нуля», проделывая каждый раз уникальную работу. Либо — этот путь используется в современных строительных технологиях — вы бы изготовили набор простых молекул, из которых можно собирать самые разнообразные молекулы большего размера, сочетая модули тем или иным образом. Оказывается, именно такое модульное строение имеют биологические молекулы. Согласно теории эволюции, таким и должен был быть самой простой путь к крупным молекулам, поскольку в начале эволюционного процесса необходимость в конструировании очень сложных молекул отсутствовала. Со временем же могли добавляться новые модули, расширяя коллекцию крупных разнородных элементов, что вполне соответствует духу эволюции.
Белки
Основной структурной единицей белков являются молекулы аминокислот. Чтобы понять, что такое аминокислота, представьте себе совокупность атомов, у которых с одной стороны наружу выступает водород, с другой — соединенные между собой кислород и водород, а посередине расположены разнообразные другие компоненты. Подобно тому как бусины нанизываются на нить, из этих аминокислот собираются белки — ион водорода (Н+) одной аминокислоты объединяется с ионом гидроксила (ОН–) другой аминокислоты с образованием молекулы воды. (Представьте, как каждый раз при соединении двух аминокислотных молекул между ними пробегает капелька воды.) Среди белков самую важную роль играют белки-ферменты (см. Катализаторы и ферменты), регулирующие химические реакции в клетках; но белки также являются важными структурными компонентами живых организмов. Например, ваши волосы и ногти состоят из белков.
Углеводы
Углеводы содержат кислород, водород и углерод в соотношении 1:2:1. Во многих живых системах молекулы углеводов выполняют роль источников энергии. Одним из важнейших углеводов можно считать сахар глюкозу, содержащую шесть атомов углерода (С6Н12О6). Глюкоза — конечный продукт фотосинтеза и, следовательно, основа всей пищевой цепи в биосфере. Соединяя молекулы глюкозы, как основные строительные модули, можно получить сложные углеводы. Как и белки, углеводы играют вспомогательную роль в клетках, поскольку входят в клеточные структуры. Например, растительные волокна состоят из целлюлозы, которая представляет собой вереницу сцепленных особым образом молекул глюкозы.
Липиды
Липиды — это нерастворимые в воде органические молекулы. Вы получите правильное представление о липидах, если вообразите капельки жира, плавающие на поверхности бульона. В живых организмах липиды выполняют две важные функции. Один класс молекул — фосфолипиды — состоят из маленькой головки, содержащей фосфатную группу (атом фосфора, соединенный с четырьмя атомами кислорода), и длинного углеводородного хвоста. Углеводородный хвост этой молекулы гидрофобен, то есть энергетическое состояние молекулы минимально, когда этот хвост находится не в воде. Напротив, фосфатная головка гидрофильна, то есть энергетическое состояние молекулы минимально при контакте головки с водой . Если поместить молекулы фосфолипидов в воду, они будут стремиться достичь минимального энергетического состояния и выстроятся таким образом, что их хвосты окажутся вместе, а головки — врозь. Такая двухслойная структура очень стабильна, поскольку головки будут в контакте с водой, но вода будет вытеснена из области, окружающей хвосты молекул. Для перемещения липидным молекулам необходима энергия — либо чтобы удалить гидрофильные участки из воды, либо чтобы поместить в воду гидрофобные участки. Из таких липидных двухслойных структур состоят клеточные мембраны и мембраны, разделяющие компоненты клетки. Эти пластичные и прочные молекулы отделяют живое от неживого.
Кроме того, в липидах запасается энергия. Липиды могут накапливать примерно вдвое больше энергии на единицу массы, чем углеводы. Вот почему, когда вы переедаете и ваш организм хочет запасти энергию на случай непредвиденных обстоятельств в будущем, когда пищи не будет, он станет запасать ее в форме жира. На этом простом факте строится многомиллиардная индустрия диетических продуктов.
Нуклеиновые кислоты
Молекулы ДНК и РНК (см. Центральная догма молекулярной биологии) переносят информацию о химических процессах, идущих в клетке, и участвуют в передаче содержащейся в ДНК информации в цитоплазму клетки. В ДНК живого организма закодированы белки-ферменты, которые катализируют все химические реакции, происходящие в этом организме.
Молекулы-переносчики энергии
Жизнедеятельность требует затрат энергии. В частности, нужно, чтобы энергия, произведенная в одном месте, могла быть использована в другом. Эту функцию в клетке осуществляет целая армия специализированных молекул. Пожалуй, самые важные из них — аденозин трифосфат (АТФ) и аденозин дифосфат (АДФ). Обе молекулы устроены так: группа из атомов углерода, водорода и азота (она называется аденин) присоединена к молекуле рибозы (это сахар), и все это вместе крепится к хвосту из фосфатов. Из названий молекул понятно, что в хвосте АДФ содержится два фосфата, а в хвосте АТФ — три. Когда в клетке происходит химический процесс, например фотосинтез, образующаяся энергия идет на присоединение третьего фосфата к хвосту АДФ. Полученная молекула АТФ затем переносится в другие части клетки. Там запасенная энергия может быть использована в других химических процессах: она выделяется при отщеплении последнего фосфата от АТФ, в результате чего АТФ вновь превращается в АДФ.
Как мы уже упоминали, существуют и другие молекулы, которые переносят энергию в клетке. Набор таких молекул чем-то напоминает разные варианты оплаты счетов. Вы можете выбрать наличные, банковский перевод, кредитную карту и т. д. — в зависимости от того, какой способ вам удобнее. Так же и клетка для поддержания своей жизнедеятельности может использовать АТФ (эквивалент наличных денег) или любую другую из большого набора более сложных молекул.
См. также:
1.10: Углеводы — Biology LibreTexts
- Последнее обновление
- Сохранить как PDF
- Углеводы
- Моносахариды и дисахариды
- Полисахариды
- Биотопливо: от сахара к энергии
- Резюме
- Узнать больше
- Обзор
Сахар.Это похоже на биологическую энергию?
В детстве вам, возможно, говорили, что сахар вреден для вас. Что ж, это не совсем так. По сути, углеводы состоят из сахара, от одной молекулы сахара до тысяч молекул сахара, соединенных вместе. Почему? Одна из причин — запасать энергию. Но это не значит, что вы должны есть ложкой.
Углеводы
Углеводы — наиболее распространенный тип органических соединений. Углевод представляет собой органическое соединение, такое как сахар или крахмал, и используется для хранения энергии.Как и большинство органических соединений, углеводы состоят из небольших повторяющихся единиц, которые образуют связи друг с другом, образуя более крупную молекулу. В случае углеводов небольшие повторяющиеся единицы называются моносахаридами. Углеводы содержат только углерод, водород и кислород.
Моносахариды и дисахариды
Моносахарид представляет собой простой сахар, такой как фруктоза или глюкоза. Фруктоза содержится во фруктах, тогда как глюкоза обычно возникает в результате переваривания других углеводов. Глюкоза (C 6 H 12 O 6 ) используется для получения энергии клетками большинства организмов и является продуктом фотосинтеза.
Общая формула для моносахарида :
(CH 2 O) n ,
, где n может быть любым числом больше двух. Например, в глюкозе n равно 6, а формула:
C 6 H 12 O 6 .
Другой моносахарид, фруктоза, имеет ту же химическую формулу, что и глюкоза, но атомы расположены по-другому.Молекулы с той же химической формулой, но с атомами в другом расположении, называются изомерами . Сравните молекулы глюкозы и фруктозы в Рис. ниже. Можете ли вы определить их различия? Единственное отличие состоит в расположении некоторых атомов. Эти различия влияют на свойства двух моносахаридов.
Молекула сахарозы. Эта молекула сахарозы представляет собой дисахарид. Он состоит из двух моносахаридов: глюкозы слева и фруктозы справа.
Если два моносахарида соединяются вместе, они образуют углевод, называемый дисахаридом . Примером дисахарида является сахароза (столовый сахар), который состоит из моносахаридов глюкозы и фруктозы ( Рисунок выше). Моносахариды и дисахариды также называют простых сахаров . Они обеспечивают основной источник энергии для живых клеток.
Полисахариды
Полисахарид представляет собой сложный углевод, который образуется, когда простые сахара связываются в цепочку.Полисахариды могут содержать всего несколько простых сахаров или тысячи из них. Сложные углеводы выполняют две основные функции: накапливают энергию и формируют структуры живых существ. Некоторые примеры сложных углеводов и их функции показаны в Таблице ниже. Какой тип сложных углеводов использует ваше собственное тело для хранения энергии?
Имя | Функция | Пример |
---|---|---|
Крахмал | Используется растениями для хранения энергии. | Картофель хранит крахмал в подземных клубнях. |
Гликоген | Используется животными для хранения энергии. | Человек хранит гликоген в клетках печени. |
Целлюлоза | Используется растениями для образования жестких стенок вокруг клеток. | Растения используют целлюлозу для своих клеточных стенок. |
Хитин | Используется некоторыми животными для формирования внешнего скелета. | Комнатная муха использует хитин для своего экзоскелета. |
Биотопливо: от сахара к энергии
В течение многих лет было много шума, как положительного, так и отрицательного, о производстве этанольного топлива из кукурузы. Это хорошая идея? Это необходимо? Эти вопросы необходимо обсудить. Тем не менее, Калифорнийский залив быстро становится мировым центром нового поколения альтернатив экологически чистому топливу. Объединенный институт биоэнергетики разрабатывает методы отделения биотоплива от сахаров в целлюлозе.См. Biofuels: Beyond Ethanol на http://www.kqed.org/quest/television…beyond-ethanol для получения дополнительной информации.
При просмотре Биотопливо: помимо этанола, сосредотачивается на следующих концепциях:
- использование «целлюлозной биомассы»,
- то, что подразумевается под «направленной эволюцией».
Резюме
- Углеводы — это органические соединения, используемые для хранения энергии.
- Моносахарид — это простой сахар, например фруктоза или глюкоза.
- Сложные углеводы выполняют две основные функции: накапливают энергию и формируют структуры живых существ.
Узнать больше
Используйте этот ресурс, чтобы ответить на следующие вопросы.
- Что углеводы обеспечивают клетке?
- Опишите глюкозу.
- Что такое изомер? Привести пример.
- Что такое дисахарид? Привести пример.
- Какую роль играет крахмал? Какой углевод представляет собой крахмал?
Обзор
- Что такое углевод?
- Назовите три факта о глюкозе.
- Предположим, вы пытаетесь идентифицировать неизвестную органическую молекулу. Он содержит только углерод, водород и кислород и находится в клеточных стенках недавно обнаруженных видов растений. Что это за органическое соединение? Почему?
- Сравните и сопоставьте структуру и функции простых сахаров и сложных углеводов.
Структура и функции углеводов
Результаты обучения
- Различия между моносахаридами, дисахаридами и полисахаридами
- Определите несколько основных функций углеводов
Большинство людей знакомы с углеводами, одним типом макромолекул, особенно когда речь идет о том, что мы едим.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружаются углеводами» перед важными соревнованиями, чтобы у них было достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар, который является компонентом крахмала и ингредиентом многих основных продуктов питания. Углеводы также выполняют другие важные функции у людей, животных и растений.
Углеводы могут быть представлены стехиометрической формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компоненты — это углерод («углевод») и компоненты воды (отсюда «гидрат»). Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.
Моносахариды
Моносахариды ( mono — = «один»; sacchar — = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза. В моносахаридах количество атомов углерода обычно составляет от трех до семи. Большинство названий моносахаридов оканчиваются на суффикс — ose . Если сахар имеет альдегидную группу (функциональная группа со структурой R-CHO), он известен как альдоза, а если у него есть кетонная группа (функциональная группа со структурой RC (= O) R ‘), он известен как кетоза.В зависимости от количества атомов углерода в сахаре они также могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и / или гексозы (шесть атомов углерода). См. Рисунок 1 для иллюстрации моносахаридов.
Рис. 1. Моносахариды классифицируются на основе положения их карбонильной группы и количества атомов углерода в основной цепи. Альдозы имеют карбонильную группу (обозначенную зеленым) на конце углеродной цепи, а кетозы имеют карбонильную группу в середине углеродной цепи.Триозы, пентозы и гексозы имеют три, пять и шесть углеродных скелетов соответственно.
Химическая формула глюкозы: C 6 H 12 O 6 . У человека глюкоза — важный источник энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыточная глюкоза часто хранится в виде крахмала, который катаболизируется (расщепление более крупных молекул клетками) людьми и другими животными, которые питаются растениями.
Галактоза и фруктоза — другие распространенные моносахариды: галактоза содержится в молочном сахаре, а фруктоза — во фруктовых сахарах. Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они отличаются структурно и химически (и известны как изомеры) из-за разного расположения функциональных групп вокруг асимметричный углерод; все эти моносахариды имеют более одного асимметричного углерода (рис. 2).
Практический вопрос
Рис. 2. Глюкоза, галактоза и фруктоза — это гексозы. Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C6h22O6), но другое расположение атомов.
Что это за сахара, альдоза или кетоза?
Показать ответГлюкоза и галактоза — альдозы. Фруктоза — это кетоза.
Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевых формах (рис. 3).Глюкоза в кольцевой форме может иметь два разных расположения гидроксильной группы (-ОН) вокруг аномерного углерода (углерод 1, который становится асимметричным в процессе образования кольца). Если гидроксильная группа находится ниже углеродного номера 1 в сахаре, говорят, что она находится в положении альфа ( α ), а если она выше плоскости, говорят, что она находится в положении бета ( β ). .
Рис. 3. Моносахариды из пяти и шести атомов углерода находятся в равновесии между линейной и кольцевой формами.Когда кольцо образуется, боковая цепь, которую оно замыкает, фиксируется в положении α или β. Фруктоза и рибоза также образуют кольца, хотя они образуют пятичленные кольца в отличие от шестичленного кольца глюкозы.
Дисахариды
Дисахариды ( ди — = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (также известной как реакция конденсации или синтез дегидратации). Во время этого процесса гидроксильная группа одного моносахарида соединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь.Ковалентная связь, образованная между молекулой углевода и другой молекулой (в данном случае между двумя моносахаридами), известна как гликозидная связь (рис. 4). Гликозидные связи (также называемые гликозидными связями) могут быть альфа- или бета-типа. Альфа-связь образуется, когда группа ОН на углероде-1 первой глюкозы находится ниже плоскости кольца, а бета-связь образуется, когда группа ОН на углероде-1 находится выше плоскости кольца.
Рис. 4. Сахароза образуется, когда мономер глюкозы и мономер фруктозы соединяются в реакции дегидратации с образованием гликозидной связи.При этом теряется молекула воды. По соглашению атомы углерода в моносахариде нумеруются от концевого углерода, ближайшего к карбонильной группе. В сахарозе гликозидная связь образуется между углеродом 1 в глюкозе и углеродом 2 во фруктозе.
Общие дисахариды включают лактозу, мальтозу и сахарозу (рис. 5). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.
Рис. 5. Общие дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).
Полисахариды
Длинная цепь моносахаридов, связанных гликозидными связями, известна как полисахарид ( поли — = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов.Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров. Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.
Крахмал — это хранимая в растениях форма сахаров, состоящая из смеси амилозы и амилопектина (оба полимера глюкозы). Растения способны синтезировать глюкозу, а избыток глюкозы, превышающий непосредственные потребности растения в энергии, хранится в виде крахмала в различных частях растения, включая корни и семена. Крахмал в семенах обеспечивает питание зародыша во время его прорастания, а также может служить источником пищи для людей и животных.Крахмал, потребляемый людьми, расщепляется ферментами, такими как амилазы слюны, на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.
Крахмал состоит из мономеров глюкозы, которые соединены гликозидными связями α 1-4 или α 1-6. Цифры 1-4 и 1-6 относятся к числу атомов углерода двух остатков, которые соединились с образованием связи. Как показано на рисунке 6, амилоза представляет собой крахмал, образованный неразветвленными цепями мономеров глюкозы (только α 1-4 связей), тогда как амилопектин представляет собой разветвленный полисахарид ( α 1-6 связей в точках ветвления).
Рис. 6. Амилоза и амилопектин — две разные формы крахмала. Амилоза состоит из неразветвленных цепей мономеров глюкозы, соединенных α 1,4 гликозидными связями. Амилопектин состоит из разветвленных цепей мономеров глюкозы, соединенных гликозидными связями α 1,4 и α 1,6. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.
Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы.Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц. Когда уровень глюкозы в крови снижается, гликоген расщепляется с высвобождением глюкозы в процессе, известном как гликогенолиз.
Целлюлоза — самый распространенный природный биополимер. Клеточная стенка растений в основном состоит из целлюлозы; это обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны гликозидными связями β, 1-4 (рис. 7).
Рис. 7. В целлюлозе мономеры глюкозы связаны в неразветвленные цепи β 1-4 гликозидными связями. Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.
Как показано на рисунке 7, каждый второй мономер глюкозы в целлюлозе перевернут, и мономеры плотно упакованы в виде удлиненных длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток.В то время как связь β 1-4 не может быть разрушена пищеварительными ферментами человека, травоядные животные, такие как коровы, коалы, буйволы и лошади, способны с помощью специализированной флоры в их желудке переваривать богатый растительный материал. в целлюлозе и использовать ее в качестве источника пищи. У этих животных определенные виды бактерий и простейших обитают в рубце (часть пищеварительной системы травоядных животных) и секретируют фермент целлюлазу. В аппендиксе пасущихся животных также содержатся бактерии, переваривающие целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных.Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии. Термиты также способны расщеплять целлюлозу из-за присутствия в их телах других организмов, выделяющих целлюлазы.
Рис. 8. У насекомых есть твердый внешний скелет, сделанный из хитина, типа полисахарида.
Углеводы выполняют различные функции у разных животных. У членистоногих (насекомых, ракообразных и др.) Есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела (как видно у пчелы на Рисунке 8).
Этот экзоскелет сделан из биологической макромолекулы хитина, который представляет собой полисахаридсодержащий азот. Он состоит из повторяющихся единиц N-ацетил- β -d-глюкозамина, модифицированного сахара. Хитин также является основным компонентом клеточных стенок грибов; грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.
Вкратце: структура и функции углеводов
Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки и обеспечивают структурную поддержку растительным клеткам, грибам и всем членистоногим, включая омаров, крабов, креветок, насекомых и пауков.Углеводы классифицируются как моносахариды, дисахариды и полисахариды в зависимости от количества мономеров в молекуле. Моносахариды связаны гликозидными связями, которые образуются в результате реакций дегидратации, образуя дисахариды и полисахариды с удалением молекулы воды для каждой образованной связи. Глюкоза, галактоза и фруктоза являются обычными моносахаридами, тогда как обычные дисахариды включают лактозу, мальтозу и сахарозу. Крахмал и гликоген, примеры полисахаридов, являются формами хранения глюкозы в растениях и животных соответственно.Длинные полисахаридные цепи могут быть разветвленными или неразветвленными. Целлюлоза является примером неразветвленного полисахарида, тогда как амилопектин, составляющий крахмал, представляет собой сильно разветвленную молекулу. Хранение глюкозы в виде полимеров, таких как крахмал или гликоген, делает ее немного менее доступной для метаболизма; однако это предотвращает его утечку из клетки или создание высокого осмотического давления, которое может вызвать чрезмерное поглощение воды клеткой.
Внесите свой вклад!
У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.
Улучшить страницуПодробнее
углеводов | Базовая биология
Что вы узнаете на этой странице
- Что такое углевод
- Почему углеводы важны
- Структура углеводов
- Различия между моносахаридами, дисахаридами и полисахаридами
- Примеры важных углеводов
Углеводы — это сахар или полимер сахаров. Полимер — это два или более простых сахара, соединенных вместе. Углеводы — это молекулы на основе углерода, в которых водород и кислород связаны с цепочкой атомов углерода.
Простой сахар известен как моносахарид. Моносахариды могут связываться вместе с образованием дисахаридов и полисахаридов. Это три разных типа углеводов, и все они важны для разных целей в естественном мире.
Почему углеводы важны?
Вся жизнь на Земле требует углеводов. Они проникли в жизнь не только животных и растений, но также грибов, бактерий, архей и простейших.
Углеводы играют важнейшую роль как источник энергии. Химическая энергия сахаров является основным источником энергии для большинства живых существ.Растения используют энергию солнца и CO₂ для производства углеводов. Эти углеводы составляют основу почти всех экосистем на Земле.
Использование углеводов для получения энергии предотвращает использование белков для получения энергии. Это важно, поскольку позволяет использовать белки для других целей, таких как метаболизм и сокращение мышц.
Некоторые из более сложных углеводов обеспечивают структурную поддержку и защиту. Клетки растений и грибов имеют клеточные стенки, состоящие из углеводов. Эти клеточные стенки обеспечивают защиту и поддержку клетки и всего организма.
Углеводы также участвуют в распознавании клеток.У клеток есть углеводы на внешней поверхности клеточных мембран, которые действуют как рецепторы. Рецепторы могут взаимодействовать с углеводами на мембранах других клеток и помогать клеткам идентифицировать друг друга.
Структура углеводов
Химическая структура и состав углеводов относительно просты по сравнению с белками и липидами. Большинство углеводов полностью состоят из атомов углерода, водорода и кислорода. Углевод имеет три или более атомов углерода, по крайней мере, два атома кислорода и несколько атомов водорода.Некоторые углеводы также содержат атомы азота, например хитин, который содержится в панцирях насекомых.
Атомы углерода могут связываться с четырьмя другими атомами. В углеводах атомы углерода образуют линейную цепь, связываясь с двумя другими атомами углерода. Цепочка заканчивается, когда углерод использует три свои связи с кислородом и водородом, а не с двумя атомами углерода.
Атомы кислорода углеводов могут быть связаны с углеродом двойными или одинарными связями. Если кислород образует двойную связь с атомом углерода (C = O) вдоль углеродной цепи, это называется карбонильной группой.
Кислород может быть связан с углеродной цепью в гидроксильной группе (атом кислорода, связанный с атомом водорода -ОН) одинарной связью с атомом углерода углеродной цепи. Углевод может содержать более одной гидроксильной группы.
Атомы водорода занимают большую часть оставшихся углеродных связей. Обычно в углеводе примерно в два раза больше атомов водорода, чем атомов кислорода.
На самом деле углеводы не всегда образуют линейные цепи, а часто располагаются в виде колец.Это происходит потому, что двойная связь между углеродом и кислородом карбонильной группы восстанавливается до одинарной связи, а кислород вместо этого связывается с другим атомом углерода вдоль цепи. Это создает кольцо, содержащее несколько атомов углерода и один атом кислорода.
Моносахариды — простые сахара
Моносахариды — это самые основные углеводы, обычно известные как простые сахара. В их состав входят хорошо известные сахара, такие как глюкоза и фруктоза. Моносахарид включает все необходимые компоненты углевода i.е. углеродная цепь, карбонильная группа и гидроксильная группа.
Моносахариды являются строительными блоками для более крупных углеводов, а также используются в клетках для производства белков и липидов. Сахара, которые не используются для получения энергии, часто хранятся в виде липидов или более сложных углеводов.
Это моносахариды, которые в основном используются клетками для получения энергии. Глюкоза, возможно, является наиболее важным моносахаридом, поскольку она используется при дыхании для обеспечения клеток энергией. Энергия, хранящаяся в связях молекулы глюкозы, преобразуется серией реакций в энергию, которая может быть использована клетками.
Дисахариды
Дисахарид — это углевод, состоящий из двух моносахаридов, соединенных вместе. Они по-прежнему считаются сахарами, но уже не являются простыми сахарами.
Моносахариды связываются вместе в так называемой реакции дегидратации, потому что молекула воды удаляется, когда два сахара связываются вместе. Реакция происходит между двумя гидроксильными группами (-ОН) двух моносахаридов.
Гидроксильная группа полностью удаляется из одного моносахарида, а из второго моносахарида удаляется атом водорода из гидроксильной группы.Удаленная гидроксильная группа и водород образуют молекулу воды, то есть OH + H → H₂O
Из второго моносахарида все еще остается кислород из гидроксильной группы. Этот кислород связывается с атомом углерода, из которого была удалена гидроксильная группа на первом моносахариде. Связь связывает два моносахарида вместе, создавая дисахарид.
Самый известный дисахарид — это сахароза, которую мы используем дома в качестве сахара из-за ее сладости. Сахароза образуется путем связывания одной молекулы фруктозы и одной молекулы глюкозы.
глюкоза + фруктоза = сахароза
Другой хорошо известный дисахарид — это лактоза, сахар, содержащийся в молочных продуктах. Лактоза состоит из одной молекулы глюкозы и одной молекулы галактозы.
Люди нередко испытывают трудности с расщеплением лактозы на глюкозу и галактозу после употребления молочных продуктов. Это причина состояния здоровья, известного как непереносимость лактозы, которая может вызвать диарею, вздутие живота, газы и рвоту.
Названия моносахаридных и дисахаридных углеводов заканчиваются суффиксом -оза.Например, фруктоза, глюкоза, галактоза, сахароза и лактоза.
Полисахариды
Полисахарид — это три или более моносахаридов, соединенных вместе. Точно так же, как образуется дисахарид, полисахариды образуются в результате множественных реакций дегидратации между углеводами.
Отдельный моносахарид в полисахариде называется мономером. Полисахарид, состоящий из множества мономеров, можно назвать полимером. Некоторые полимеры имеют длину более 1000 мономеров (или моносахаридов).
мономер = моносахарид; полимер = полисахарид
мономер + мономер + мономер = полимер
Полисахариды обладают рядом биологических функций. Ключевая функция, которую они выполняют, — временное хранение энергии. Растения хранят энергию в виде полисахарида, известного как «крахмал». Многие культуры, такие как кукуруза, рис и картофель, важны из-за высокого содержания крахмала. Люди и другие животные накапливают энергию в наших мышцах и печени с помощью полисахарида, известного как «гликоген».
Вторая важная роль полисахаридов — обеспечение структурной поддержки. У растений есть два очень важных структурных полисахарида: целлюлоза и лигнин.
Целлюлоза — ключевое соединение, из которого состоят клеточные стенки растительных клеток. Клеточные стенки отвечают за защиту и поддержание формы растительных клеток. Лигнин — это структурное соединение, из которого образуется древесина, благодаря которому растения превращаются в гигантские деревья.
Животные и грибы также используют полисахариды в качестве конструкционных материалов.Хитин — это полисахарид, который содержится в экзоскелетах насекомых, пауков и ракообразных, а также в клеточных стенках грибов.
Резюме
- Углеводы — одна из четырех основных молекул жизни
- Углеводы — это молекулы, состоящие из атомов углерода, водорода и кислорода и включающие карбонильную группу (C = O) и гидроксильную группу (-OH)
- Углеводы являются основным источником энергии для большинства организмов, а также важны как структурные соединения и распознавание клеток-клеток.
- Три типа углеводов — это моносахариды, дисахариды и полисахариды.
- Моносахариды — это простые сахара e.грамм. глюкоза и фруктоза
- Дисахариды образуются путем связывания двух моносахаридов вместе
- Полисахариды содержат три или более моносахаридов и также известны как полимеры
- Полисахариды важны для хранения энергии и обеспечения поддержки и защиты клеток и целых организмов
Последняя редакция: 23 апреля 2016 г.
БЕСПЛАТНЫЙ 6-недельный курс
Введите свои данные, чтобы получить доступ к нашему БЕСПЛАТНО 6-недельному вводному курсу электронной почты по биологии.
Узнайте о животных, растениях, эволюции, древе жизни, экологии, клетках, генетике, областях биологии и многом другом.
Успех! Письмо с подтверждением было отправлено на адрес электронной почты, который вы только что указали. Проверьте свою электронную почту и убедитесь, что вы щелкнули ссылку, чтобы начать наш 6-недельный курс.
3.2 Углеводы — Биология для курсов AP®
Цели обучения
К концу этого раздела вы сможете:
- Какова роль углеводов в клетках и во внеклеточном материале животных и растений?
- Какие существуют классификации углеводов?
- Как моносахаридные строительные блоки собираются в дисахариды и сложные полисахариды?
Соединение для AP
® КурсыУглеводы обеспечивают энергию для клеток и структурную поддержку растений, грибов и членистоногих, таких как насекомые, пауки и ракообразные.Состоящие из углерода, водорода и кислорода в соотношении CH 2 O или углерода, гидратированного водой, углеводы классифицируются как моносахариды, дисахариды и полисахариды в зависимости от количества мономеров в макромолекуле. Моносахариды связаны гликозидными связями, которые образуются в результате дегидратационного синтеза. Глюкоза, галактоза и фруктоза — обычные изомерные моносахариды, тогда как сахароза или столовый сахар — дисахариды. Примеры полисахаридов включают целлюлозу и крахмал в растениях и гликоген у животных.Хотя хранение глюкозы в виде полимеров, таких как крахмал или гликоген, делает ее менее доступной для метаболизма, это предотвращает ее утечку из клеток или создание высокого осмотического давления, которое может вызвать чрезмерное поглощение воды клеткой. У насекомых жесткий внешний скелет из хитина, уникального азотсодержащего полисахарида.
Представленная информация и примеры, выделенные в разделе, поддерживают концепции и цели обучения, изложенные в Большой идее 4 Структуры учебной программы по биологии AP ® .Цели обучения, перечисленные в структуре учебной программы, обеспечивают прозрачную основу для курса биологии AP ® , лабораторного опыта на основе запросов, учебных мероприятий и экзаменационных вопросов AP ® . Цель обучения объединяет требуемый контент с одной или несколькими из семи научных практик.
Большая идея 4 | Биологические системы взаимодействуют, и эти системы и их взаимодействия обладают сложными свойствами. |
Постоянное понимание 4.A | Взаимодействия внутри биологических систем приводят к появлению сложных свойств. |
Основные знания | 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы. |
Научная практика | 7,1 Учащийся может связывать явления и модели в пространственных и временных масштабах. |
Цель обучения | 4,1 Учащийся может уточнить представления и модели, чтобы объяснить, как подкомпоненты биологического полимера и их последовательность определяют свойства этого полимера. |
Основные знания | 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы. |
Научная практика | 1.3 Студент может уточнить представления и модели природных или антропогенных явлений и систем в своей области. |
Цель обучения | 4,2 Учащийся может уточнить представления и модели, чтобы объяснить, как подкомпоненты биологического полимера и их последовательность определяют свойства этого полимера. |
Основные знания | 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы. |
Научная практика | 6,1 Студент может обосновать свои претензии доказательствами. |
Научная практика | 6,4 Студент может делать утверждения и предсказания о природных явлениях на основе научных теорий и моделей. |
Цель обучения | 4,3 Учащийся может использовать модели для прогнозирования и обоснования того, что изменения в подкомпонентах биологического полимера влияют на функциональность молекул. |
Задания для научной практики содержат дополнительные тестовые вопросы для этого раздела, которые помогут вам подготовиться к экзамену AP. Эти вопросы касаются следующих стандартов:
[APLO 4.15] [APLO 2.5]
Молекулярные структуры
Большинство людей знакомы с углеводами, одним типом макромолекул, особенно когда речь идет о том, что мы едим. Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружаются углеводами» перед важными соревнованиями, чтобы у них было достаточно энергии для соревнований на высоком уровне.Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар, который является компонентом крахмала и ингредиентом многих основных продуктов питания. Углеводы также выполняют другие важные функции у людей, животных и растений.
Углеводы могут быть представлены стехиометрической формулой (CH 2 O) n , где n — количество атомов углерода в молекуле.Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компоненты — это углерод («углевод») и компоненты воды (отсюда «гидрат»). Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.
Моносахариды
Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза. В моносахаридах количество атомов углерода обычно составляет от трех до семи.Большинство названий моносахаридов оканчиваются суффиксом -ose. Если сахар имеет альдегидную группу (функциональная группа со структурой R-CHO), он известен как альдоза, а если у него есть кетонная группа (функциональная группа со структурой RC (= O) R ‘), он известен как кетоза. В зависимости от количества атомов углерода в сахаре они также могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и / или гексозы (шесть атомов углерода). См. Рисунок 3.5 для иллюстрации моносахаридов.
Рисунок 3.5 Моносахариды классифицируются на основе положения их карбонильной группы и количества атомов углерода в основной цепи. Альдозы имеют карбонильную группу (обозначенную зеленым) на конце углеродной цепи, а кетозы имеют карбонильную группу в середине углеродной цепи. Триозы, пентозы и гексозы имеют трех-, пяти- и шестиуглеродные скелеты соответственно.
Химическая формула глюкозы: C 6 H 12 O 6 . У человека глюкоза — важный источник энергии.Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыточная глюкоза часто хранится в виде крахмала, который катаболизируется (расщепление более крупных молекул клетками) людьми и другими животными, которые питаются растениями.
Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится в сахарозе, во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они отличаются структурно и химически (и известны как изомеры) из-за разного расположения функциональных групп вокруг асимметричный углерод; все эти моносахариды имеют более одного асимметричного углерода (рис. 3.6).
Визуальное соединение
Рис. 3.6. Глюкоза, галактоза и фруктоза — это гексозы. Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C 6 H 12 O 6 ), но другое расположение атомов.
Определите каждый сахар как альдозу или кетозу.- фруктоза
- галактоза
- глюкоза
- Глюкоза и галактоза — альдозы. Фруктоза — это кетоза
- Глюкоза и фруктоза — альдозы. Галактоза — это кетоза.
- Галактоза и фруктоза относятся к кетозам. Глюкоза — это альдоза.
- Глюкоза и фруктоза относятся к кетозам. Галактоза — это альдоза.
Глюкоза, галактоза и фруктоза представляют собой изомерные моносахариды (гексозы), что означает, что они имеют одинаковую химическую формулу, но имеют немного разные структуры.Глюкоза и галактоза — это альдозы, а фруктоза — кетоза.
Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевых формах (рис. 3.7). Глюкоза в кольцевой форме может иметь два разных расположения гидроксильной группы (ОН) вокруг аномерного углерода (углерод 1, который становится асимметричным в процессе образования кольца). Если гидроксильная группа находится под номером углерода 1 в сахаре, говорят, что она находится в положении альфа ( α ), а если она выше плоскости, говорят, что она находится в положении бета ( β ). .
Рис. 3.7 Моносахариды из пяти и шести атомов углерода находятся в равновесии между линейной и кольцевой формами. Когда кольцо образуется, боковая цепь, которую оно замыкает, фиксируется в положении α или β . Фруктоза и рибоза также образуют кольца, хотя они образуют пятичленные кольца в отличие от шестичленного кольца глюкозы.
Дисахариды
Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (также известной как реакция конденсации или синтез дегидратации).Во время этого процесса гидроксильная группа одного моносахарида соединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь. Ковалентная связь, образованная между молекулой углевода и другой молекулой (в данном случае между двумя моносахаридами), известна как гликозидная связь (рис. 3.8). Гликозидные связи (также называемые гликозидными связями) могут быть альфа- или бета-типа.
Рис. 3.8 Сахароза образуется, когда мономер глюкозы и мономер фруктозы соединяются в реакции дегидратации с образованием гликозидной связи.При этом теряется молекула воды. По соглашению атомы углерода в моносахариде нумеруются от концевого углерода, ближайшего к карбонильной группе. В сахарозе гликозидная связь образуется между углеродом 1 в глюкозе и углеродом 2 во фруктозе.
Общие дисахариды включают лактозу, мальтозу и сахарозу (рис. 3.9). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.
Рис. 3.9. Обычные дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).
Полисахариды
Длинная цепь моносахаридов, связанных гликозидными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров.Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.
Крахмал — это хранимая в растениях форма сахаров, состоящая из смеси амилозы и амилопектина (оба полимера глюкозы). Растения способны синтезировать глюкозу, а избыток глюкозы, превышающий непосредственные потребности растения в энергии, хранится в виде крахмала в различных частях растения, включая корни и семена. Крахмал в семенах обеспечивает питание зародыша во время его прорастания, а также может служить источником пищи для людей и животных.Крахмал, потребляемый людьми, расщепляется ферментами, такими как амилазы слюны, на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.
Крахмал состоит из мономеров глюкозы, которые соединены α 1-4 или α 1-6 гликозидными связями. Цифры 1-4 и 1-6 относятся к числу атомов углерода двух остатков, которые соединились с образованием связи. Как показано на рисунке 3.10, амилоза представляет собой крахмал, образованный неразветвленными цепями мономеров глюкозы (только α 1-4 связей), тогда как амилопектин представляет собой разветвленный полисахарид ( α 1-6 связей в точках ветвления).
Рис. 3.10 Амилоза и амилопектин — две разные формы крахмала. Амилоза состоит из неразветвленных цепей мономеров глюкозы, соединенных α 1,4 гликозидными связями. Амилопектин состоит из разветвленных цепей мономеров глюкозы, соединенных α 1,4 и α 1,6 гликозидными связями. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.
Поддержка учителей
- Получите копии метаболических диаграмм и используйте их, чтобы проиллюстрировать студентам связь между углеводным обменом, производством и распадом липидов и аминокислот. Попросите учащихся проследить молекулу глюкозы через ее метаболизм и определить точки связи между путями макромолекул. Спросите студентов, что происходит, когда перерабатывается избыток сахара на молекулярном уровне.
- Попросите класс исследовать опасность избыточного потребления углеводов, включая возможные опасности для здоровья.Предложите им изучить состояние, имеющее отношение к их семье.
- Углеводы или сахара — это не только столовый сахар. Все они имеют основную формулу CH 2 O. Соотношение углерода, водорода и кислорода всегда одинаково. Количество атомов углерода определяет категорию сахара. Биологические сахара обычно представляют собой пентозы (5 атомов углерода или C 5 H 10 O 5 ) или гексозы (6 атомов углерода или C 6 H 12 O 6 ).
- Моносахариды являются строительными блоками всех сахаров.Если объединить два, они представляют собой дисахариды; если их объединить более двух, они образуют большую молекулу, называемую полисахаридом. Тип связи между мономерами определяет, могут ли животные их переваривать. Если кислород, связывающий мономеры, ориентирован вниз по отношению к обоим соседним атомам углерода, это называется альфа-связью и может перевариваться. Если атом кислорода ориентирован вверх по отношению к одному углероду и вниз по отношению к следующему, это называется бета-связью и не может перевариваться пищеварительными ферментами животных.
- В Соединенных Штатах люди потребляют большое количество углеводов, часто в виде сахаров. При расщеплении углеводы являются непосредственным источником энергии. Они также участвуют в метаболизме других типов макромолекул. Сахара могут быть преобразованы в ряд аминокислот, нуклеиновых кислот и жиров, если это необходимо организму.
Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц.Когда уровень глюкозы в крови снижается, гликоген расщепляется с высвобождением глюкозы в процессе, известном как гликогенолиз.
Целлюлоза — самый распространенный природный биополимер. Клеточная стенка растений в основном состоит из целлюлозы; это обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны β 1-4 гликозидными связями (рис. 3.11).
Рис. 3.11. В целлюлозе мономеры глюкозы связаны в неразветвленные цепи β 1-4 гликозидными связями.Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.
Как показано на рисунке 3.11, каждый второй мономер глюкозы в целлюлозе перевернут, и мономеры плотно упакованы в виде вытянутых длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Хотя связь β 1-4 не может быть разрушена пищеварительными ферментами человека, травоядные животные, такие как коровы, коалы и буйволы, способны с помощью специализированной флоры в их желудке переваривать растительный материал, богатый целлюлозой. и использовать его как источник пищи.У этих животных некоторые виды бактерий и простейших обитают в пищеварительной системе травоядных и секретируют фермент целлюлазу. В аппендиксе пасущихся животных также содержатся бактерии, переваривающие целлюлозу, что придает ей важную роль в пищеварительной системе некоторых жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии. Термиты также способны расщеплять целлюлозу из-за присутствия в их телах других организмов, выделяющих целлюлазы.
Углеводы выполняют различные функции у разных животных. Членистоногие (насекомые, ракообразные и другие) имеют внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела (как видно на пчеле на рис. 3.12). Этот экзоскелет состоит из биологической макромолекулы хитина, который представляет собой азотсодержащий полисахарид. Он состоит из повторяющихся единиц N-ацетил- β -d-глюкозамина, модифицированного сахара. Хитин также является основным компонентом клеточных стенок грибов; грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.
Рис. 3.12. У насекомых есть твердый внешний скелет, сделанный из хитина, типа полисахарида. (кредит: Луиза Докер)
Связь с карьерой
Зарегистрированные диетологи помогают планировать программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для лечения и профилактики заболеваний. Например, диетологи могут научить пациента с диабетом, как контролировать уровень сахара в крови, употребляя в пищу правильные типы и количество углеводов.Диетологи также могут работать в домах престарелых, школах и частных клиниках.
Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, зарегистрированные диетологи должны пройти программу стажировки под руководством и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в области химии и физиологии (биологических функций) пищи (белков, углеводов и жиров).
Преимущества углеводов
Полезны ли углеводы? Некоторые люди считают, что углеводы вредны для них и их следует избегать. Некоторые диеты полностью запрещают потребление углеводов, утверждая, что низкоуглеводная диета помогает людям быстрее похудеть. Однако углеводы были важной частью рациона человека на протяжении тысячелетий; артефакты древних цивилизаций свидетельствуют о наличии пшеницы, риса и кукурузы в хранилищах наших предков.
Углеводы следует дополнять белками, витаминами и жирами, чтобы они были частью хорошо сбалансированной диеты.С точки зрения калорийности грамм углеводов обеспечивает 4,3 ккал. Для сравнения, жиры дают 9 Ккал / г, менее желательное соотношение. Углеводы содержат растворимые и нерастворимые элементы; нерастворимая часть известна как клетчатка, которая в основном состоит из целлюлозы. Волокно имеет множество применений; он способствует регулярному опорожнению кишечника за счет увеличения объема и регулирует скорость потребления глюкозы в крови. Клетчатка также помогает удалить излишки холестерина из организма: клетчатка связывается с холестерином в тонком кишечнике, затем присоединяется к холестерину и предотвращает попадание частиц холестерина в кровоток, а затем холестерин выходит из организма через кал.Кроме того, еда, содержащая цельнозерновые и овощи, дает ощущение сытости. В качестве непосредственного источника энергии глюкоза расщепляется в процессе клеточного дыхания, в результате чего образуется АТФ, энергетическая валюта клетки. Без потребления углеводов доступность «мгновенной энергии» была бы уменьшена. Некоторым людям может потребоваться исключение углеводов из рациона, но такой шаг может оказаться полезным не для всех.
Ссылка на обучение
Чтобы получить дополнительную информацию об углеводах, изучите «Биомолекулы: углеводы» с помощью этой интерактивной анимации.
Клетчатка на самом деле не является питательным веществом, потому что она проходит через наш организм непереваренной. Почему клетчатка не переваривается и почему она важна для нашей диеты?
- Ферменты, необходимые для переваривания целлюлозы, не производятся в организме человека; непереваренная клетчатка увеличивает объем пищи, облегчая опорожнение кишечника.
- Ферменты, переваривающие целлюлозу, не могут связываться с целлюлозой из-за изменения активных центров; непереваренная клетчатка увеличивает объем пищи, облегчая опорожнение кишечника.
- Ферменты, необходимые для переваривания целлюлозы, в организме человека не производятся; клетчатка производит энергию для обмена веществ.
- Конкурентные ингибиторы не являются причиной того, что клетчатка не переваривается.
Подключение к научной практике для курсов AP®
Действия
Используйте набор молекулярных моделей, чтобы сконструировать полисахарид из нескольких различных моносахаридных мономеров. Объясните, как структура полисахарида определяет его основную функцию как молекулы хранения энергии.Затем используйте свою модель, чтобы описать, как изменения в структуре приводят к изменениям в функциях.
Подумай об этом
- Объясните, почему спортсмены часто «загружают углеводы» перед большой игрой или турниром.
- Объясните, почему некоторым животным, включая человека, трудно переваривать целлюлозу. Опишите структурную разницу между целлюлозой и крахмалом, который легко усваивается человеком. Как коровы и другие жвачные животные могут переваривать целлюлозу?
Поддержка учителей
Это упражнение является применением Задачи обучения 4.1 и научная практика 7.1 и цель обучения 4.3 и научная практика 6.1 и 6.4, потому что студенты сначала создают модель, чтобы показать связь между структурой и функцией на молекулярном уровне, а затем используют модель, чтобы предсказать, как изменения в структуре на молекулярном уровне могут повлиять на свойства и функции молекулы.
Первый вопрос «Подумай об этом» — это применение Цели обучения 4.1 и Научной практики 7.1, потому что студенты связывают структуру молекулы с ее функцией.
Второй вопрос «Подумай об этом» — это применение Цели обучения 4.1, Научной практики 7.1, Задачи обучения 4.2 и Научной практики 1.3, поскольку студенты используют представления о структурных особенностях молекул для объяснения взаимосвязи между их структурой и функцией свойств (s ).
углеводов | Определение, классификация и примеры
Классификация и номенклатура
Узнайте о структурах и использовании простых сахаров глюкоза, фруктоза и галактоза
Моносахариды играют важную роль в передаче энергии.
Encyclopædia Britannica, Inc. Посмотреть все видеоролики к этой статьеХотя для углеводов был разработан ряд схем классификации, разделение на четыре основные группы — моносахариды, дисахариды, олигосахариды и полисахариды — используемые здесь, являются одними из наиболее распространенных. . Большинство моносахаридов или простых сахаров содержится в винограде, других фруктах и меде. Хотя они могут содержать от трех до девяти атомов углерода, наиболее распространенные представители состоят из пяти или шести, соединенных вместе в цепочечную молекулу.Три наиболее важных простых сахара — глюкоза (также известная как декстроза, виноградный сахар и кукурузный сахар), фруктоза (фруктовый сахар) и галактоза — имеют одинаковую молекулярную формулу (C 6 H 1 2 O 6 ), но поскольку их атомы имеют разное структурное расположение, сахара имеют разные характеристики; т.е. они являются изомерами.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасНезначительные изменения в структурном расположении, обнаруживаемые живыми существами, влияют на биологическое значение изомерных соединений.Известно, например, что степень сладости различных сахаров различается в зависимости от расположения гидроксильных групп (OH), составляющих часть молекулярной структуры. Однако прямая корреляция, которая может существовать между вкусом и каким-либо конкретным структурным устройством, еще не установлена; то есть еще невозможно предсказать вкус сахара, зная его конкретное структурное расположение. Энергия в химических связях глюкозы косвенно снабжает большинство живых существ большей частью энергии, необходимой им для продолжения своей деятельности.Галактоза, которая редко встречается в виде простого сахара, обычно сочетается с другими простыми сахарами с образованием более крупных молекул.
Две связанные друг с другом молекулы простого сахара образуют дисахарид или двойной сахар. Дисахарид сахароза или столовый сахар состоит из одной молекулы глюкозы и одной молекулы фруктозы; Наиболее известные источники сахарозы — сахарная свекла и тростниковый сахар. Молочный сахар или лактоза и мальтоза также являются дисахаридами. Прежде чем энергия дисахаридов может быть использована живыми существами, молекулы должны быть разбиты на соответствующие моносахариды.Олигосахариды, которые состоят из трех-шести моносахаридных единиц, довольно редко встречаются в природных источниках, хотя было идентифицировано несколько производных растений.
кристаллы лактозыпоказаны кристаллы лактозы суспендированными в масле. Их отличная форма позволяет идентифицировать их в продуктах питания, исследуемых для исследования.
© Кайла Саслоу, любезно предоставлено Университетом Висконсин-МэдисонПолисахариды (термин означает много сахаров) представляют собой большинство структурных и энергетических углеводов, встречающихся в природе.Большие молекулы, которые могут состоять из 10 000 связанных вместе моносахаридных единиц, полисахариды значительно различаются по размеру, сложности структуры и содержанию сахара; К настоящему времени идентифицировано несколько сотен различных типов. Целлюлоза, основной структурный компонент растений, представляет собой сложный полисахарид, состоящий из множества глюкозных единиц, связанных вместе; это наиболее распространенный полисахарид. Крахмал, содержащийся в растениях, и гликоген, содержащийся в животных, также представляют собой сложные полисахариды глюкозы.Крахмал (от древнеанглийского слова stercan , что означает «застывать») содержится в основном в семенах, корнях и стеблях, где он хранится в качестве доступного источника энергии для растений. Растительный крахмал может быть переработан в такие продукты, как хлеб, или может потребляться напрямую, например, в картофеле. Гликоген, состоящий из разветвленных цепочек молекул глюкозы, образуется в печени и мышцах высших животных и хранится в качестве источника энергии.
Окончание общей номенклатуры моносахаридов — -оза ; таким образом, термин пентоза ( pent = пять) используется для моносахаридов, содержащих пять атомов углерода, а гексоза ( hex = шесть) используется для тех, которые содержат шесть.Кроме того, поскольку моносахариды содержат химически реактивную группу, которая представляет собой либо альдегидную группу, либо кетогруппу, их часто называют альдопентозами, или кетопентозами, или альдогексозами, или кетогексозами. Альдегидная группа может находиться в положении 1 альдопентозы, а кетогруппа может находиться в другом положении (например, 2) внутри кетогексозы. Глюкоза представляет собой альдогексозу, то есть она содержит шесть атомов углерода, а химически реактивная группа представляет собой альдегидную группу.
Углеводы — MHCC Biology 112: Biology for Health Professions
Углеводы — это макромолекулы, с которыми большинство потребителей в некоторой степени знакомо.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружаются углеводами» перед важными соревнованиями, чтобы убедиться, что у них достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, в частности, через глюкозу, простой сахар. Углеводы также выполняют другие важные функции у людей, животных и растений.
Рис. 1 Хлеб, макаронные изделия и сахар содержат большое количество углеводов. («Пшеничные продукты» Министерства сельского хозяйства США находятся в открытом доступе)Углеводы могут быть представлены стехиометрической формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компоненты — это углерод («углевод») и компоненты воды (отсюда «гидрат»).Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.
Моносахариды
Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза. В моносахаридах количество атомов углерода обычно составляет от трех до семи. Большинство названий моносахаридов оканчиваются суффиксом -ose.
Химическая формула глюкозы: C 6 H 12 O 6 . У человека глюкоза — важный источник энергии.Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыточная глюкоза часто хранится в виде крахмала, который катаболизируется (расщепление более крупных молекул клетками) людьми и другими животными, которые питаются растениями.
Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится в сахарозе, во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они отличаются структурно и химически (и известны как изомеры) из-за разного расположения функциональных групп вокруг асимметричный углерод; все эти моносахариды имеют более одного асимметричного углерода. В одном моносахариде все атомы связаны друг с другом прочными ковалентными связями.
Рисунок 2 Глюкоза, галактоза и фруктоза — все это гексозы.Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C 6 H 12 O 6 ), но другое расположение атомов. Линии между атомами представляют собой ковалентные связи.Дисахариды
Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (также известной как реакция конденсации или синтез дегидратации). Во время этого процесса гидроксильная (ОН) группа одного моносахарида объединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь, которая соединяет два моносахарида вместе.
Общие дисахариды включают лактозу, мальтозу и сахарозу (рис. 3). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он образуется в результате реакции дегидратации между глюкозой и молекулами галактозы, которая удаляет молекулу воды и образует ковалентную связь. связаны ковалентной связью. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, состоящий из двух молекул глюкозы, связанных ковалентной связью. Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы, также связанных ковалентной связью.
Рисунок 3 Общие дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).Полисахариды
Длинная цепь моносахаридов, связанных гликозидными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Все моносахариды связаны ковалентными связями. Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров.Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.
Крахмал — это хранимая в растениях форма сахаров, состоящая из смеси амилозы и амилопектина (оба полимера глюкозы). По сути, крахмал — это длинная цепь мономеров глюкозы. Растения способны синтезировать глюкозу, а избыток глюкозы, превышающий непосредственные потребности растения в энергии, хранится в виде крахмала в различных частях растения, включая корни и семена. Крахмал в семенах обеспечивает питание зародыша во время его прорастания, а также может служить источником пищи для людей и животных.Крахмал, потребляемый людьми, расщепляется ферментами, такими как амилазы слюны, на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.
Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц. Когда уровень глюкозы в крови снижается, гликоген расщепляется с высвобождением глюкозы в процессе, известном как гликогенолиз.
Рисунок 4 Амилоза и амилопектин — две разные формы крахмала. Амилоза состоит из неразветвленных цепей мономеров глюкозы. Амилопектин состоит из разветвленных цепей мономеров глюкозы. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.Целлюлоза — самый распространенный природный биополимер. Клеточная стенка растений в основном состоит из целлюлозы; это обеспечивает структурную поддержку клетки.Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы (рис. 5).
Рис. 5 В целлюлозе мономеры глюкозы связаны в неразветвленные цепи. Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.Углеводы выполняют различные функции у разных животных. Членистоногие (насекомые, ракообразные и другие) имеют внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела (как видно на пчеле на рисунке 6).Этот экзоскелет состоит из биологической макромолекулы хитина, которая представляет собой полисахаридсодержащий азот. Он состоит из повторяющихся единиц N-ацетил- β -d-глюкозамина, модифицированного сахара. Хитин также является основным компонентом клеточных стенок грибов; грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.
Рис. 6 У насекомых есть твердый внешний скелет, сделанный из хитина, типа полисахарида. (кредит: Луиза Докер)Энергия может храниться в связях молекулы.Связи, соединяющие два атома углерода или соединяющие атом углерода с атомом водорода, являются высокоэнергетическими связями. Разрыв этих связей высвобождает энергию. Вот почему наши клетки могут получать энергию от молекулы глюкозы (C 6 H 12 O 6).
Полисахариды образуют длинные волокнистые цепи, которые могут создавать прочные структуры, такие как клеточные стенки.
Если не указано иное, изображения на этой странице лицензированы OpenStax по лицензии CC-BY 4.0.
OpenStax, Биология. OpenStax CNX. 27 мая 2016 г. http://cnx.org/contents/[email protected]:QhGQhr4x@6/Biological-Molecules
Углеводы
Моносахариды
Углеводы — самая распространенная биомолекула на Земле. Живые организмы используют углеводы в качестве доступной энергии для подпитки клеточных реакций и структурной поддержки внутри клеточных стенок. Клетки прикрепляют молекулы углеводов к белкам и липидам, изменяя структуры для повышения функциональности. Например, небольшие молекулы углеводов, связанные с липидами в клеточных мембранах, улучшают идентификацию клеток, передачу сигналов и сложные реакции иммунной системы.Углеводные мономеры дезоксирибоза и рибоза являются неотъемлемыми частями молекул ДНК и РНК.
Чтобы понять, как углеводы функционируют в живых клетках, мы должны понять их химическую структуру. Структура углеводов определяет, как энергия сохраняется в углеводных связях во время фотосинтеза и как разрушение этих связей высвобождает энергию во время клеточного дыхания.
Биомолекулы соответствуют определенным структурным критериям, чтобы их можно было классифицировать как углеводы. Простые углеводы представляют собой модификации коротких углеводородных цепей.Несколько гидроксилов и одна карбонильная функциональная группа модифицируют эти углеводородные цепи, чтобы создать моносахарид, основную единицу всех углеводов.
Моносахариды состоят из углеродной цепи из трех или более атомов углерода, содержащей гидроксильную группу, присоединенную к каждому атому углерода, кроме одного. Одинокий атом углерода связан двойной связью с атомом кислорода, и эта карбонильная группа может находиться в любом положении вдоль углеродной цепи. Следовательно, один атом кислорода и два атома водорода присутствуют на каждом атоме углерода в моносахариде.Следовательно, мы можем определить моносахариды как имеющие молекулярную формулу (CH 2 O) n , где n равно количеству атомов углерода и должно быть больше или равно трем.
Моносахариды (греч., Что означает «единичный сахар») представляют собой простые сахара и часто обозначаются с использованием суффикса –оза. Сахара с карбонильной группой, присоединенной к атому углерода на конце цепи, представляют собой альдозы («альдегидный сахар»), такие как глюкоза. Когда карбонильная группа расположена где угодно, кроме конца углеродной цепи, моносахарид представляет собой кетозу («кетоновый сахар»), такую как фруктоза.
Поскольку положение отдельных атомов в молекуле сахара варьируется, многие моносахариды являются изомерами друг друга. Например, глюкоза и фруктоза имеют общую молекулярную формулу C 6 H 12 O 6 , но структурно различаются. Различия между изомерами не всегда так очевидны, как в структурных изомерах, таких как глюкоза и фруктоза. Более тонкие стереоизомеры имеют одинаковый порядок ковалентных связей между атомами, но различаются трехмерными положениями атомов вокруг одного или нескольких отдельных атомов углерода.Например, глюкоза и галактоза являются стереоизомерами и очень похожи на рисунках. Мелкие детали, например, простирается ли -ОН с правой или левой стороны каждого атома углерода, чрезвычайно важны для вкуса, химической активности и здоровья человека.
В кристаллической форме большинство моносахаридов имеют структуру с «длинной цепью». Напротив, сахара, растворенные в растворе, таком как жидкость внутри клетки, часто превращаются в «кольцевую» структуру. На молекулярную формулу сахара не влияют превращения длинной цепи в кольцевую.Кольцевые формы сахаров — это структуры, которые реагируют с образованием димеров углеводов и полимеров.
Некоторые моносахариды модифицируются клеточными ферментами для усиления или изменения их клеточной функции. Хотя модифицированные сахара не соответствуют формальному определению углеводов, они образуются путем небольших модификаций обычных моносахаридов. Дезоксирибоза, ключевой сахарный компонент всех молекул ДНК, является «дезоксисахаром». Для образования дезоксирибозы 5-углеродный моносахарид рибоза «дезоксигенируется», удаляя одну конкретную гидроксильную группу и заменяя ее атомом водорода.Напротив, «аминосахара» модифицируются путем добавления новой функциональной группы. В аминосахаре одна или несколько гидроксильных групп заменены азотсодержащими функциональными группами. Аминосахара играют важную роль в иммунной системе, нейрональной обработке и структурной поддержке.
Функциональные группы углеводов
Это задание проверяет вашу способность определять все функциональные группы моносахаридов в углеводах.
Структура и функции углеводов
Углеводные мономеры, короткие цепи и полимеры выполняют важные клеточные функции для поддержания жизни.Количество и тип используемых моносахаридов, а также положение связи между ними определяют трехмерную структуру каждого углевода. Признавая структурные и функциональные различия между обычными углеводными мономерами и полимерами, мы можем лучше понять роль, которую углеводы играют внутри клеток и в рационе человека.
Клетки строят углеводные полимеры, используя энергию для образования гликозидных связей, связей между моносахаридами. Реакция синтеза дегидратации формирует связь между атомами углерода в двух моносахаридах, помещая атом кислорода между ними и высвобождая молекулу воды.Дисахарид образуется при соединении двух мономеров. Сахароза (столовый сахар) производится путем соединения двух определенных мономеров, глюкозы и фруктозы. Различные пары моносахаридов производят многие из обычных дисахаридных сахаров, которые мы связываем с пищей, включая сахарозу, мальтозу (солодовый сахар, два мономера глюкозы) и лактозу (молочный сахар, мономеры глюкозы и галактозы).
Углеводные цепи удлиняются за счет дополнительных реакций синтеза дегидратации, добавляя по одному мономеру к растущей цепи.Короткие цепи, называемые олигосахаридами, часто присоединяются к липидам и белкам. Эти углеводные «метки» поддерживают функции иммунной системы, участвуют в клеточной коммуникации и помогают прикреплять клетки к внеклеточным поверхностям и другим клеткам.
Углеводные цепи с сотнями или более моносахаридными звеньями являются полисахаридами. В отличие от более коротких цепей углеводные полимеры часто состоят из моносахаридной единицы одного типа. Различия в структуре и функциях этих полимеров возникают в основном из-за различий в гликозидной связи, а не из-за наличия разных моносахаридов.Гликозидные связи включают ковалентные связи от одного атома углерода в каждом моносахариде до одного атома кислорода между ними. Однако то, какие атомы углерода участвуют в этой ковалентной связи, может быть различным в каждой молекуле углевода.
Наиболее распространенные полисахариды построены исключительно из мономеров глюкозы, в то время как значительные структурные различия между этими полисахаридами возникают в основном из-за положения и количества гликозидных связей в каждой единице глюкозы. Хотя эти различия в связях кажутся незначительными на первый взгляд, функциональный эффект незначительных структурных различий в каждой гликозидной связи огромен.
Построение и расщепление углеводов
Это задание проверяет вашу способность идентифицировать реагенты и продукты в синтезе и гидролизе углеводов.
Полисахариды
Полисахариды, «сложные углеводы», играют жизненно важную роль в хранении энергии и структурную роль в живых организмах, делая углеводы самыми распространенными биомолекулами на Земле. Полисахариды — прекрасные молекулы для хранения энергии, потому что они легко строятся и расщепляются ферментами.Образуя довольно компактные структуры, полисахариды позволяют накапливать энергию без места, необходимого для пула свободных мономеров глюкозы. Другие полисахариды образуют прочные волокна, которые обеспечивают защиту и структурную поддержку как у растений, так и у животных.
При небольших различиях в связи между мономерами полимеры могут функционировать как компактные аккумуляторы энергии в крахмале и гликогене или как прочные защитные волокна в целлюлозе и хитине. Понимание структуры, синтеза и распада углеводных полимеров обеспечивает основу для понимания их функции в живых клетках.
Животные, в том числе люди, создают полимеры глюкозы, называемые гликогеном. Положение гликозидной связи между мономерами глюкозы заставляет полимеры гликогена скручиваться в спиральную форму. Полимеры гликогена значительно разветвлены, с несколькими мономерами в первичной цепи, содержащими вторую гликозидную связь с другой глюкозой. Вторые места прикрепления позволяют более коротким цепям глюкозы отходить от основной цепи, упаковывая больше единиц глюкозы в компактную спиральную структуру.
Хотя структура гликогена позволяет людям и другим животным накапливать энергию в относительно компактной форме, полимер может быстро разлагаться. Животные инициируют ферментативные реакции гидролиза для расщепления гликогена, когда требуется энергия. Для быстрого доступа к энергии гликоген хранится у человека в основном в двух местах: в печени для легкой доставки в кровоток и в мышцах для непосредственного использования по мере необходимости.
Растения синтезируют два типа полисахаридов, крахмал и целлюлозу.Гликозидные связи между глюкозными единицами в растительном крахмале аналогичны связям в гликогене животного происхождения. Соответственно, молекулы крахмала похожи по своей структуре, образуют компактные спирали и играют аналогичную роль в хранении энергии для растений. В отличие от гликогена, молекулы крахмала сильно различаются по уровню разветвления. Большинство растений образуют смесь полимеров крахмала с минимальным разветвлением или без него и полимеров с обширным разветвлением.
Помимо обеспечения энергией растений, которые их синтезируют, крахмал служит основным источником пищи для многих животных.Люди и другие животные вырабатывают ферменты, которые в процессе пищеварения расщепляют молекулы крахмала на мелкие фрагменты. У людей это пищеварение начинается во рту с помощью фермента амилазы, который расщепляет полимеры крахмала на дисахариды (мальтозу). Чтобы на себе ощутить переваривание крахмала, попробуйте долго жевать несоленый крекер. Через некоторое время крекер стал сладким на вкус? Это образование дисахаридов мальтозы во рту при переваривании крахмала. Соль может скрыть многие другие вкусы, поэтому этот мини-эксперимент лучше всего подходит для несоленых крекеров.
Растения синтезируют структурный полисахарид, называемый целлюлозой. Хотя целлюлоза состоит из глюкозы, гликозидные связи между мономерами глюкозы отличаются от связей в гликогене и крахмале. Эта уникальная структура связи заставляет целлюлозные цепи образовывать линейные плоские нити вместо спиралей. Плоские целлюлозные нити могут образовывать плотно упакованные пучки. Прочные и жесткие волокна образуются в результате образования водородных связей между полярными гидроксильными группами в связанных полимерах. Волокна целлюлозы обеспечивают структурную поддержку растений.Без целлюлозы стебли цветов и стволы деревьев не могли бы сохранять свою жесткую, прямую высоту.
Структурные различия между гликозидными связями в крахмале и целлюлозе влияют на способность животных переваривать растительную пищу. Ферменты, такие как амилаза, не могут разрушать полимеры целлюлозы. Некоторые животные, в том числе коровы и термиты, переваривают целлюлозу, размещая в своем пищеварительном тракте особые микроорганизмы, вырабатывающие ферменты, разрушающие целлюлозу. Однако люди и большинство животных не вырабатывают фермент, способный разлагать целлюлозу, оставляя волокна целлюлозы непереваренными, когда они проходят через организм.Люди действительно используют растительную целлюлозу недиетическими способами, обрабатывая деревья, хлопок и другие растения для производства бумаги, одежды и многих других распространенных материалов. Люди также собирают большие деревья, чтобы строить конструкции из древесины, богатой целлюлозой.
Некоторые животные синтезируют особый полисахарид, хитин, который образует защитную оболочку экзоскелета. Гликозидные связи в хитине очень похожи на связи целлюлозы, в результате чего хитин также образует линейные, хорошо упакованные листы из прочных волокон.В отличие от целлюлозы, хитин синтезируется из модифицированного моносахарида, называемого аминосахаром.